Objective: Endobronchial ultrasound (EBUS) is commonly used to guide transbronchial needle biopsies for the staging of lymph nodes in non-small cell lung cancer patients. Although contrast-enhanced ultrasound (CEUS) and microbubbles (MBs) can improve the diagnostic accuracy in tumors, the ability of contrast-enhanced EBUS (CE-EBUS) to image MBs has not yet been comprehensively evaluated. In this study, we assessed the ability of a CE-EBUS system (Olympus EU-ME2 PREMIER and BF-UC180F bronchoscope) to detect laboratory-synthesized MBs in comparison to clinical (Toshiba Aplio SSA-790A) and pre-clinical (VisualSonics Vevo 2100) CEUS systems in vitro and in vivo, respectively.
Methods: Agar flow phantoms and reference tissue were used to assess CE-EBUS MB imaging in vitro, and A549 tumor-bearing athymic nude and AE17-OVA tumor-bearing C57BL/6 mice were used to assess MB detectability and perfusion in vivo, respectively.
Results: Results revealed that despite the lower sensitivity of CE-EBUS to MB concentration in comparison to clinical CEUS, CE-EBUS yielded a similar contrast-to-tissue ratio (CTR) in vitro of 28.9 ± 4.5 dB for CE-EBUS, compared with 29.7 ± 2.6 dB for clinical CEUS (p < 0.05). In vivo, CE-EBUS generated a perfusion curve highly correlated with that obtained with the pre-clinical CEUS system (Pearson correlation coefficient = 0.927, p < 0.05). Moreover, CE-EBUS yielded a CTR 2.7 times higher than that obtained with the pre-clinical ultrasound system.
Conclusion: These findings together suggest that CE-EBUS can perform contrast imaging comparable to that produced by commercial pre-clinical and clinical ultrasound systems, with potential for clinical characterization of mediastinal lymph nodes in lung cancer patients.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ultrasmedbio.2023.08.020 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!