Systematic Literature Review of the Natural History of Spinal Muscular Atrophy: Motor Function, Scoliosis, and Contractures.

Neurology

From F. Hoffmann-La Roche Ltd. (V.A.R., Y.M., K.G., C.S.S.), Basel, Switzerland; Mtech Access Limited (S.B., S.M.), Bicester, United Kingdom; SMA Europe (N.G.), Freiburg, Germany; SMA Schweiz (N.G.), Heimberg, Switzerland; Departments of Pediatrics and Neurology Neurosurgery (M.O.), McGill University, Montreal, Quebec, Canada; MDUK Oxford Neuromuscular Centre (L.S.), Department of Paediatrics, University of Oxford, United Kingdom; and Division of Child Neurology (L.S.), Centre de Rèfèrences des Maladies Neuromusculaires, Department of Pediatrics, University Hospital Liège and University of Liège, Belgium.

Published: November 2023

AI Article Synopsis

  • The study focuses on spinal muscular atrophy (SMA), a progressive neuromuscular disorder that leads to motor function loss and associated complications like scoliosis and contractures, aiming to understand its natural progression and treatment outcomes.
  • The research reviewed 93 publications analyzing motor function, scoliosis, and contracture outcomes in SMA patients, particularly focusing on types 1-3, and included data from various study designs.
  • Findings indicate that significant loss of motor function is expected across all ages in SMA patients, highlighting the long-term risks for untreated individuals, especially those with types 2 and 3 SMA.

Article Abstract

Background And Objectives: Spinal muscular atrophy (SMA) is a progressive neuromuscular disorder associated with continuous motor function loss and complications, such as scoliosis and contractures. Understanding the natural history of SMA is key to demonstrating the long-term outcomes of SMA treatments. This study reviews the natural history of motor function, scoliosis, and contractures in patients with SMA.

Methods: Electronic databases were searched from inception to June 27, 2022 (Embase, MEDLINE, and Evidence-Based Medicine Reviews). Observational studies, case-control studies, cross-sectional studies, and case series reporting on motor function (i.e., sitting, standing, and walking ability), scoliosis, and contracture outcomes in patients with types 1-3 SMA were included. Data on study design, baseline characteristics, and treatment outcomes were extracted. Data sets were generated from studies that reported Kaplan-Meier (KM) curves and pooled to generate overall KM curves.

Results: Ninety-three publications were included, of which 68 reported on motor function. Of these, 10 reported KM curves (3 on the probability of sitting in patients with types 2 and 3 SMA and 8 on the probability of walking/ambulation in patients with type 3 SMA). The median time to loss of sitting (95% CI) was 14.5 years (14.1-31.5) for the type 2 SMA sitter population (their maximum ability was independent sitting). The median time to loss of ambulation (95% CI) was 13.4 years (12.5-14.5) for type 3a SMA (disease onset at age younger than 3 years) and 44.2 years (43.0-49.4) for type 3b SMA (disease onset at age 3 years or older). Studies including scoliosis and contracture outcomes mostly reported non-time-to-event data.

Discussion: The results demonstrate that a high degree of motor function loss is inevitable, affecting patients of all ages. In addition, data suggest that untreated patients with types 2 and 3 SMA remain at risk of losing motor milestones during late adulthood, and patients with types 3a and 3b SMA are at risk of loss of ambulation over time. These findings support the importance of stabilization of motor function development even at older ages. Natural history data are key for the evaluation of SMA treatments as they contextualize the assessment of long-term outcomes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10663020PMC
http://dx.doi.org/10.1212/WNL.0000000000207878DOI Listing

Publication Analysis

Top Keywords

motor function
28
natural history
16
patients types
16
type sma
16
scoliosis contractures
12
sma
12
types sma
12
spinal muscular
8
muscular atrophy
8
motor
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!