Superporous soy protein isolate matrices as superabsorbent dressings for successful management of highly exuding wounds: In vitro and in vivo characterization.

Int J Biol Macromol

Tissue Engineering and Biomicrofluidics Laboratory, School of Biomedical Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, Uttar Pradesh, India; Centre for Advanced Biomaterials and Tissue Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, Uttar Pradesh, India. Electronic address:

Published: December 2023

Soy protein isolate (SPI) has received widespread attention of the biomedical research community primarily due to its good biocompatibility, biodegradability, high availability and low cost. Herein, glutaraldehyde cross-linked microporous sponge-like SPI scaffolds were prepared using the cryogelation technique for tissue engineering applications. The prepared SPI scaffolds possess an interconnected porous structure with approximately 90% porosity and an average pore size in the range of 45-92 μm. The morphology, porosity, swelling capacity and degradation rate of the cryogels were found to be dependent on the concentration of polymer to crosslinking agent. All cryogels were found to be elastic and able to maintain physical integrity even after being compressed to one-fifth of their original length during cyclic compression analysis. These cryogels showed excellent mechanical properties, immediate water-triggered shape restoration and absorption speed. Furthermore, cryogels outperformed cotton and gauze in terms of blood clotting and blood cell adherence. The in vitro and in vivo studies demonstrated the potency of SPI scaffolds for skin tissue engineering applications. Our findings showed that crosslinking with glutaraldehyde had no detrimental effects on cell viability. In addition, an in vivo wound healing study in rats validated them as good potential wound dressing materials.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijbiomac.2023.127268DOI Listing

Publication Analysis

Top Keywords

spi scaffolds
12
soy protein
8
protein isolate
8
vitro vivo
8
tissue engineering
8
engineering applications
8
superporous soy
4
isolate matrices
4
matrices superabsorbent
4
superabsorbent dressings
4

Similar Publications

Type III protein secretion systems (T3SSs) function as multiprotein devices that span the envelope of Gram-negative bacteria using the peptidoglycan (PG) layer as scaffold. This spatial arrangement explains why modifications in PG structure can alter T3SS activity. In incorporation of non-canonical D-amino acids in the PG was shown to decrease the activity of the T3SS encoded by the pathogenicity island-1 (SPI-1) without affecting other T3SS, like the flagellum apparatus.

View Article and Find Full Text PDF

Spatiotemporal Control Over Protein Release from Artificial Cells via a Light-Activatable Protease.

Adv Biol (Weinh)

September 2024

Laboratory of Bio-Organic Chemistry, Department of Biomedical Engineering, and Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, Eindhoven, 5600 MB, The Netherlands.

The regulation of protein uptake and secretion by cells is paramount for intercellular signaling and complex multicellular behavior. Mimicking protein-mediated communication in artificial cells holds great promise to elucidate the underlying working principles, but remains challenging without the stimulus-responsive regulatory machinery of living cells. Therefore, systems to precisely control when and where protein release occurs should be incorporated in artificial cells.

View Article and Find Full Text PDF

Inks based on soybean protein isolate (SPI) were developed and their formulations were optimized as a function of the ink heat treatment and the content of other biopolymers to assess the effects of protein-polysaccharides and protein-protein interactions. First, the rheological behavior of the inks was analyzed in relation to the polyvinyl alcohol (PVA) concentration employed (20, 25, and 30 wt%) and, as a result of the analysis, the ink with 25 wt% PVA was selected. Additionally, sodium alginate (SA) and gelatin (GEL) were added to the formulations to improve the viscoelastic properties of the inks and the effect of the SA or GEL concentrations (1, 2, and 3 wt%) was studied.

View Article and Find Full Text PDF

Traumatic multidrug-resistant bacterial infections are the most threat to wound healing. Lower extremity wounds under diabetic conditions display a significant delay during the healing process. To overcome these challenges, the utilization of protein-based nanocomposite dressings is crucial in implementing a successful regenerative medicine approach.

View Article and Find Full Text PDF

Cell-cultured meat, which is obtained by adsorbing cells on the three-dimensional scaffold, is considered a potential solution to animal welfare issues. Edible and safe cell-cultured meat scaffolds are a key part of its research. Soy protein isolate (SPI) hydrogel has a three-dimensional network structure and has been studied for L929 cell culture because of its non-toxicity and biocompatibility.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!