In recent years, thermal plasma technology has been widely used in the harmless and resource-efficient treatment of solid waste (SW). This study investigates the migration behaviors of heavy metals during the thermal plasma treats SW to obtain the interphase structure change regimes of heavy metals. The transformation of SW under high-temperature environments was analyzed by Fluent simulation, and the composition of the crystalline phases and heavy metal content of the post-treatment slags were studied through a combination of XRD, SEM, and heavy metal leaching experiments. The results show that the thermal plasma provides a melting zone temperature of more than 4000 K, and the treated slag is mostly an amorphous solid composed of glassy Si-O mesh, which effectively encapsulates heavy metals and reduces their leaching rate. Additional analysis of the migration and transformation of heavy metals during thermal plasma treatment revealed that solid-phase heavy metals primarily took the form of sulphides and sulphates, while liquid- and gas-phase heavy metals were mostly oxides and chlorides. Simultaneously, Economic analysis results showed that the thermal plasma treats SW economically with an Energetic efficiency of up to 76.7%. The results of this study providing new insights into thermal plasma treatment SW research.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jhazmat.2023.132698DOI Listing

Publication Analysis

Top Keywords

thermal plasma
28
heavy metals
24
heavy metal
12
plasma treatment
12
heavy
9
solid waste
8
metals thermal
8
plasma treats
8
thermal
7
plasma
7

Similar Publications

Introduction: The non-thermal plasma (NTP) technique has been suggested as a sustainable horticultural practice to promote biomass accumulation, nutrient uptake, N metabolism, and disease prevention in plants. In particular, the potentiality of this technique to promote the natural accumulation of nutrients into plants deserve to be explored as input saving is strongly recommended in the horticultural sector.

Methods: The nutrient solution supplied to a red coloured variety of rocket salad [ (L.

View Article and Find Full Text PDF

Background And Aims: Endoscopic mucosal resection (EMR) of large colorectal lesions can be challenging, and residual lesions after EMR can progress to colorectal cancer. We aimed to assess the efficacy and safety of adding thermal ablation of margins [using argon plasma coagulation (APC) or snare tip soft coagulation (STSC)] in reducing recurrence rates after EMR.

Methods: We performed a systematic review and meta-analysis of randomized controlled trials (RCTs) identified from PubMed, Cochrane Library, and Embase.

View Article and Find Full Text PDF

This study explores the enhanced adsorption performance of activated carbon felt (ACF) for Cu(II) and Cd(II) ions, achieved using a dual-synergistic approach combining MnO coating and plasma treatment. ACF's intrinsic properties, including a high surface area (~ 1000-2000 m²/g), large porosity, and excellent mechanical stability, make it a promising material for environmental applications. However, its limited surface functional groups hinder its adsorption efficiency for heavy metals.

View Article and Find Full Text PDF

Complement activation drives the phagocytosis of necrotic cell debris and resolution of liver injury.

Front Immunol

January 2025

Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium.

Cells die by necrosis due to excessive chemical or thermal stress, leading to plasma membrane rupture, release of intracellular components and severe inflammation. The clearance of necrotic cell debris is crucial for tissue recovery and injury resolution, however, the underlying mechanisms are still poorly understood, especially . This study examined the role of complement proteins in promoting clearance of necrotic cell debris by leukocytes and their influence on liver regeneration.

View Article and Find Full Text PDF

Objective: High recurrence rates in head and neck squamous cell carcinoma (HNSCC) significantly affect prognosis, especially in radioresistant HNSCC (RR-HNSCC). Nonthermal plasma (NTP) therapy can effectively suppress the progression of HNSCC; however, the therapeutic mechanism of NTP therapy for RR-HNSCC remains unclear. In this study, we investigated the regulatory role of NTP in the RR-HNSCC signaling pathway and identified its signature genes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!