The purpose of this study was to develop a selective sorbent for cadmium ions (Cd(II)) enrichment in orbital shaker assisted solid phase microextraction (OS-SPME) from different aqueous and food samples. A maleic anhydride-styrene-glycidyl methacrylate (MA-St-GMA) terpolymer was synthesized and characterized in detail. Experimental variables of sample preparation step were optimized using a central composite design (CCD). The final determination step was performed using flame atomic absorption spectroscopy (FAAS). The MA-St-GMA sorbent exhibited a high adsorption capacity (195.9 mg g) for the Cd(II) ion. The developed method under optimal conditions provides satisfactory performance and a significant improvement compared to other protocols available in the literature. The linear range and detection limit of the method is 0.1-130 ng mL and 0.03 ng mL, respectively. The robustness, intraday/interday precision, selectivity, and accuracy of the method were investigated. To further validate the method, a dedicated series of analysis was performed using certified reference materials (CRMs). This part of the study confirmed the applicability of the method for routine analysis. The OS-SPME-FAAS method was validated using water and food samples. Relative standard deviations and recovery for real-world samples were in ranges 1.7-2.2 % and 95.5-98.5 %, respectively. As a result, the MA-St-GMA sorbent showed that it could quantitatively extract Cd(II) ions from aqueous solution.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.foodchem.2023.137590DOI Listing

Publication Analysis

Top Keywords

food samples
8
ma-st-gma sorbent
8
method
6
synthesis characterization
4
characterization application
4
application cross-linked
4
cross-linked functional
4
functional terpolymer
4
terpolymer epoxy
4
epoxy group
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!