Polyamines modulate mouse sperm motility.

Syst Biol Reprod Med

Laboratorio de Bioquímica Farmacológica, Departamento de Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, Mexico.

Published: December 2023

Polyamines are polycationic molecules which contains two or more amino groups (-NH) highly charged at physiological pH, and among them we found spermine, spermidine, putrescine, and cadaverine. They interact with proteins, nucleic acids, modulate Ca, K, and Na channels, and protect sperm from oxidative stress. In this work, we evaluate the effect of spermine, spermidine, and putrescine on the total, progressive and kinematic parameters of motility, capacitation, acrosome reaction, also in presence and absence of the dbcAMP, an analogue of the cAMP, and the IBMX, a phosphodiesterase inhibitor. In addition, we evaluated the intracellular concentrations of cAMP [cAMP]i, and performed an analysis between polyamines and the sAC from mouse to predict the possible interaction among them. Our results showed that all polyamines decrease drastically the total, progressive and the kinetic parameters of sperm motility, decrease the capacitation, and only spermidine and putrescine impeded the acquisition of acrosome reaction. Moreover, the effect of polyamines was attenuated but not countered by the addition of db-cAMP and IBMX, suggesting a possible inhibition of the sAC. Also, the presence of polyamines induced a decrease of the [cAMP]i, and the analysis predicted a strong interaction among polyamines and the sAC. Overall, the evidence suggests that probably the polyamines interact and inhibit the activity of the sAC.

Download full-text PDF

Source
http://dx.doi.org/10.1080/19396368.2023.2262714DOI Listing

Publication Analysis

Top Keywords

spermidine putrescine
12
polyamines
8
sperm motility
8
spermine spermidine
8
total progressive
8
acrosome reaction
8
polyamines sac
8
interaction polyamines
8
polyamines modulate
4
modulate mouse
4

Similar Publications

Spermine driven water deficit tolerance in early growth phases of sweet corn genotypes under hydroponic cultivation.

Sci Rep

January 2025

Department of Applied Plant Biology, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, Debrecen, Hungary.

Sweet corn is highly susceptible to water deprivation, making it crucial to identify effective strategies for enhancing its tolerance to water deficit conditions. This study investigates the novel application of Spermine as a bio-stimulant to improve sweet corn (Zea mays L. var.

View Article and Find Full Text PDF

Objectives: This study aimed to analyze the associations between dietary polyamine intake and incident T2DM.

Methods: This prospective analysis included 168,137 participants from the UK Biobank who did not have T2DM at baseline. Dietary polyamines were calculated based on portion sizes of food items and a nutrient database.

View Article and Find Full Text PDF

Creeping bentgrass (Agrostis stolonifera) is a cool-season perennial turfgrass and is frequently utilized in high-quality turf areas. However, a poor to moderate resistance to heat stress limits its promotion and utilization in transitional and worm climate zones. The objectives of the study were to assess the heat tolerance of 18 creeping bentgrass genotypes in the field and to further uncover differential mechanisms of heat tolerance between heat-tolerant and heat-sensitive genotypes.

View Article and Find Full Text PDF

Despite the WHO recommendations in favor of breastfeeding, most infants receive infant formulas (IFs), which are complex matrices involving numerous ingredients and processing steps. Our aim was to understand the impact of the quality of the protein ingredient in IFs on gut microbiota and physiology, blood metabolites and brain gene expression. Three IFs were produced using whey proteins (WPs) from cheese whey (IF-A) or ideal whey (IFs-C and -D) and caseins, either in a micellar form (IFs-A and -C) or partly in a non-micellar form (IF-D).

View Article and Find Full Text PDF

Background: Polyamines, including spermidine (SPD), spermine (SPM) and putrescine (PUT), are essential for cellular physiology and various cellular processes. This study aimed to examine the associations of dietary polyamines intake and all-cause mortality and incident cardiovascular disease (CVD).

Methods: This prospective cohort study included 184,732 participants without CVD at baseline from the UK Biobank who had completed at least one dietary questionnaire.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!