The TWEAK receptor, Fn14, is a promising candidate for active targeting of cancer nanotherapeutics to many solid tumor types, including metastatic breast and primary brain cancers. Targeting of therapeutic nanoparticles (NPs) has been accomplished using a range of targeting moieties including monoclonal antibodies and related fragments, peptides, and small molecules. Here, we investigated a full-length Fn14-specific monoclonal antibody, ITEM4, or an ITEM4-Fab fragment as a targeting moiety to guide the development of a clinical formulation. We formulated NPs with varying densities of the targeting moieties while maintaining the decreased nonspecific adhesivity with receptor targeting (DART) characteristics. To model the conditions that NPs experience following intravenous infusion, we investigated the impact of serum exposure in relation to the targeting moiety type and surface density. To further evaluate performance at the cancer cell level, we performed experiments to assess differences in cellular uptake and trafficking in several cancer cell lines using confocal microscopy, imaging flow cytometry, and total internal reflection fluorescence microscopy. We observed that Fn14-targeted NPs exhibit enhanced cellular uptake in Fn14-high compared to Fn14-low cancer cells and that in both cell lines uptake levels were greater than observed with control, nontargeted NPs. We found that serum exposure increased Fn14-targeted NP specificity while simultaneously reducing the total NP uptake. Importantly, serum exposure caused a larger reduction in cancer cell uptake over time when the targeting moiety was an antibody fragment (Fab region of the monoclonal antibody) compared with the full-length monoclonal antibody targeting moiety. Lastly, we uncovered that full monoclonal antibody-targeted NPs enter cancer cells via clathrin-mediated endocytosis and traffic through the endolysosomal pathway. Taken together, these results support a pathway for developing a clinical formulation using a full-length Fn14 monoclonal antibody as the targeting moiety for a DART cancer nanotherapeutic agent.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsnano.3c02575DOI Listing

Publication Analysis

Top Keywords

targeting moiety
24
monoclonal antibody
16
cancer cells
12
serum exposure
12
cancer cell
12
targeting
10
moiety type
8
cancer
8
targeting moieties
8
clinical formulation
8

Similar Publications

Investigation of Transformation Pathways of Polyfluoroalkyl Substances during Chlorine Disinfection.

Environ Sci Technol

January 2025

Department of Civil and Environmental Engineering, University of Missouri, Columbia, Missouri 65211, United States.

Recent regulations on perfluorinated compounds in drinking water underscore the need for a deeper understanding of the formation of perfluorinated compounds from polyfluoroalkyl substances during chlorine disinfection. Among the compounds investigated in this study, N-(3-(dimethylaminopropan-1-yl)perfluoro-1-hexanesulfonamide (N-AP-FHxSA) underwent rapid transformation during chlorination. Within an hour, it produced quantitative yields of various poly- and per-fluorinated products, including perfluorohexanoic acid (PFHxA).

View Article and Find Full Text PDF

Zwitterionic polymers have garnered significant attention for their distinctive properties, such as biocompatibility, antifouling capabilities, and resistance to protein adsorption, making them promising candidates for a wide range of applications, including drug delivery, oil production inhibitors, and water purification membranes. This study reports the synthesis and characterization of zwitterionic monomers and polymers through the modification of linear, vinyl, and aromatic heterocyclic functional groups via reaction with 1,3-propanesultone. Four zwitterionic polymers with varying molecular structures-ranging from linear to five and six membered ring systems-were synthesized: poly(sulfobetaine methacrylamide) (pSBMAm), poly(sulfobetaine-1-vinylimidazole) (pSB1VI), poly(sulfobetaine-2-vinylpyridine) (pSB2VP), and poly(sulfobetaine-4-vinylpyridine) (pSB4VP).

View Article and Find Full Text PDF

Aging of Polystyrene Micro/Nanoplastics Enhances Cephalosporin Phototransformation via Structure-Sensitive Interfacial Hydrogen Bonding.

Environ Sci Technol

January 2025

State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, P. R. China.

Beyond their roles in adsorbing and transporting pollutants, microplastics (MPs) and nanoplastics (NPs), particularly polystyrene variants (PS-M/NPs), have emerged as potential accelerators for the transformation of coexisting contaminants. This study uncovered a novel environmental phenomenon induced by aged PS-M/NPs and delved into the underlying mechanisms. Our findings revealed that the aged PS-M/NP particles significantly amplified the photodegradation of common cephalosporin antibiotics, and the extent of enhancement was tightly correlated to the molecular structures of cephalosporin antibiotics.

View Article and Find Full Text PDF

The mitochondriotropic antioxidants AntiOxBEN and AntiOxCIN are structurally-similar but differentially alter energy homeostasis in human skin fibroblasts.

Biochim Biophys Acta Bioenerg

January 2025

CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal; CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal.

Mitochondrial dysfunction and increased reactive oxygen species (ROS) generation play an import role in different human pathologies. In this context, mitochondrial targeting of potentially protective antioxidants by their coupling to the lipophilic triphenylphosphonium cation (TPP) is widely applied. Employing a six‑carbon (C) linker, we recently demonstrated that mitochondria-targeted phenolic antioxidants derived from gallic acid (AntiOxBEN) and caffeic acid (AntiOxCIN) counterbalance oxidative stress in primary human skin fibroblasts by activating ROS-protective mechanisms.

View Article and Find Full Text PDF

Insights on post-translational modifications in fatty liver and fibrosis progression.

Biochim Biophys Acta Mol Basis Dis

January 2025

Ion Channel Biology Laboratory, AU-KBC Research Centre, Madras Institute of Technology Campus, Anna University, Chrompet, Chennai 600 044, Tamil Nadu, India. Electronic address:

Metabolic dysfunction-associated steatotic liver disease [MASLD] is a pervasive multifactorial health burden. Post-translational modifications [PTMs] of amino acid residues in protein domains demonstrate pivotal roles for imparting dynamic alterations in the cellular micro milieu. The crux of identifying novel druggable targets relies on comprehensively studying the etiology of metabolic disorders.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!