There are empirical strategies for tuning the degree of strain localization in disordered solids, but they are system-specific and no theoretical framework explains their effectiveness or limitations. Here, we study three model disordered solids: a simulated atomic glass, an experimental granular packing, and a simulated polymer glass. We tune each system using a different strategy to exhibit two different degrees of strain localization. In tandem, we construct structuro-elastoplastic (StEP) models, which reduce descriptions of the systems to a few microscopic features that control strain localization, using a machine learning-based descriptor, softness, to represent the stability of the disordered local structure. The models are based on calculated correlations of softness and rearrangements. Without additional parameters, the models exhibit semiquantitative agreement with observed stress-strain curves and softness statistics for all systems studied. Moreover, the StEP models reveal that initial structure, the near-field effect of rearrangements on local structure, and rearrangement size, respectively, are responsible for the changes in ductility observed in the three systems. Thus, StEP models provide microscopic understanding of how strain localization depends on the interplay of structure, plasticity, and elasticity.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10589640 | PMC |
http://dx.doi.org/10.1073/pnas.2307552120 | DOI Listing |
STAR Protoc
January 2025
Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON M5S 3E1, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada. Electronic address:
The eukaryotic cell division cycle is a highly conserved process, featuring fluctuations in protein localization and abundance required for key cell cycle transitions. Here, we present a protocol for the spatiotemporal analysis of the proteome during the budding yeast cell division cycle using live-cell imaging. We describe steps for strain construction, cell cultivation, microscopy, and image analysis.
View Article and Find Full Text PDFPeerJ
January 2025
Marine Biology Unit, Department of Biology, Ghent University, Ghent, Belgium.
Animals can use specific environmental cues to make informed decisions about whether and where to disperse. Patch conditions are known to affect the dispersal behavior of animals, but empirical studies investigating the impact of resource diversity on the dispersal of closely related species are largely lacking. In this study, we investigated how food diversity affects the dispersal behavior of three co-occurring cryptic species of the marine bacterivorous nematode complex (Pm I, Pm III and Pm IV).
View Article and Find Full Text PDFNat Commun
January 2025
Department of Earth Sciences, University College London, London, UK.
Earthquakes are produced by the propagation of rapid slip along tectonic faults. The propagation dynamics is governed by a balance between elastic stored energy in the surrounding rock, and dissipated energy at the propagating tip of the slipping patch. Energy dissipation is dictated by the mechanical behaviour of the fault, which is itself the result of feedbacks between thermo-hydro-mechanical processes acting at the mm to sub-mm scale.
View Article and Find Full Text PDFPLoS One
January 2025
Information Technology Section, Changshu Center for Disease Control and Prevention, Changshu, Jiangsu, China.
Objective: This study aimed to enhance the prevention and control of pulmonary tuberculosis (PTB) and provide more effective and accurate methods in Changshu City.
Methods: The PTB patients' information came from the China Information System for Disease Control and Prevention (CISDCP). The demographic data for Changshu city and towns came from the Suzhou Statistical Yearbook and the LandScan platform.
PLoS Pathog
January 2025
Junior Research Group Herpesviruses, Infection Biology Unit, German Primate Center-Leibniz Institute for Primate Research, Göttingen, Germany.
Interaction with host cell receptors initiates internalization of Kaposi's sarcoma-associated herpesvirus (KSHV) particles. Fusion of viral and host cell membranes, which is followed by release of the viral capsid into the cytoplasm, is executed by the core fusion machinery composed of glycoproteins H (gH), L (gL), and B (gB), that is common to all herpesviruses. KSHV infection has been shown to be sensitive to inhibitors of vacuolar acidification, suggestive of low pH as a fusion trigger.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!