A second-order voltage-controlled oscillator (VCO)-based continuous-time sigma-delta modulator (CTSDM) for current-sensing readout applications is proposed. Current signals from the sensor can directly be quantized by the proposed VCO-based CTSDM, which does not require any extra trans-impedance amplifiers. With the proportional-integral (PI) structure and a VCO phase integrator, the capability of second-order noise shaping is available to reduce the in-band quantization noise. The PI structure can be simply realized by a resistor in series with the integrating capacitor, which can reduce the architecture complexity and maintain the stability of the system. The current-steering digital-to-analog converter with tail and sink current sources is used on the feedback path for the subtraction of the current-type input signal. All the components of the circuit are scaling friendly and applicable to current-sensing readout applications in the Internet of Things (IoT). The proposed VCO-based CTSDM implemented in a 0.18-μm standard CMOS process has a measured signal-to-noise and distortion ratio (SNDR) of 74.6 dB at 10 kHz bandwidth and consumes 44.8 μw only under a supply voltage of 1.2 V, which can achieve a Figure-of-Merit (FoM) of 160.76 dB.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/TBCAS.2023.3322901 | DOI Listing |
J Mol Cell Cardiol Plus
September 2023
Laboratory of Bioelectric and Bioenergetic Systems, Faculty of Biomedical Engineering, Technion-IIT, Haifa, Israel.
The sinoatrial node (SAN) is the primary heart pacemaker. The automaticity of SAN pacemaker cells is regulated by an integrated coupled-clock system. The beat interval (BI) of SAN, and its primary initiation location (inferior vs.
View Article and Find Full Text PDFSensors (Basel)
December 2024
School of Electrical and Computer Engineering, National Technical University of Athens, 15772 Athens, Greece.
Sci Rep
January 2025
Functional Nanomaterials, Department of Materials Science, Kiel University, Kaiserstr. 2, 24143, Kiel, Germany.
The pursuit for advanced magnetoelectric field sensors has gained momentum, driven by applications in various fields, ranging from biomedical applications to soft robotics and the automotive sector. In this context, a capacitive read-out based magnetostrictive polymer composite (MPC) sensor element is introduced, offering a new perspective on magnetic field detection. The sensor element's unique feature is the possibility to independently tailor its mechanical and magnetic properties.
View Article and Find Full Text PDFAnal Chem
January 2025
Department of Applied Chemistry, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan.
The integration of barcode technology with smartphones on paper-based analytical devices (PADs) presents a promising approach to bridging manual detection with digital interpretation and data storage. However, previous studies of 1D barcode approaches have been limited to providing only a "yes/no" response for analyte detection. Herein, a method of using barcode readout for semiquantitative signal detection on PADs has been achieved through the integration of barcode technology with a distance-based measurement concept on PADs.
View Article and Find Full Text PDFBiomed Microdevices
January 2025
Department of Electrical and Computer Engineering, Rutgers University, Piscataway, NJ, 08854, USA.
Wearable and implantable biosensors have rapidly entered the fields of health and biomedicine to diagnose diseases and physiological monitoring. The use of wired medical devices causes surgical complications, which can occur when wires break, become infected, generate electrical noise, and are incompatible with implantable applications. In contrast, wireless power transfer is ideal for biosensing applications since it does not necessitate direct connections between measurement tools and sensing systems, enabling remote use of the biosensors.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!