The development of heavy-atom-free photosensitizers (PSs) for photodynamic therapy (PDT) has encountered significant challenges in achieving simultaneous high fluorescence emission and reactive oxygen species (ROS) generation. Moreover, the limited water solubility of these PSs imposes further limitations on their biomedical applications. To overcome these obstacles, this study presents a molecular design strategy employing hydrophilic heavy-atom-free PSs based on imidazolium salts. The photophysical properties of these PSs were comprehensively investigated through a combination of experimental and theoretical analyses. Notably, among the synthesized PSs, the ethylcarbazole-naphthoimidazolium () conjugate exhibited efficient fluorescence emission (Φ = 0.22) and generation of singlet oxygen (Φ = 0.49), even in highly aqueous environments. The performance of was validated through its application in fluorescence bioimaging and PDT treatment in HeLa cells. Furthermore, holds promise for two-photon excitation and type I ROS generation, nucleus localization, and selective activity against Gram-positive bacteria, thereby expanding its scope for the design of heavy-atom-free PSs and phototheranostic applications.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.3c10200DOI Listing

Publication Analysis

Top Keywords

fluorescence bioimaging
8
photodynamic therapy
8
fluorescence emission
8
ros generation
8
heavy-atom-free pss
8
pss
6
imidazolium-based heavy-atom-free
4
heavy-atom-free photosensitizer
4
photosensitizer nucleus-targeted
4
fluorescence
4

Similar Publications

Carbon dots (CDs) are versatile nanomaterials that are considered ideal for application in bioimaging, drug delivery, sensing, and optoelectronics owing to their excellent photoluminescence, biocompatibility, and chemical stability features. Nitrogen doping enhances the fluorescence of CDs, alters their electronic properties, and improves their functional versatility. N-doped CDs can be synthesized via solvothermal treatment of carbon sources with nitrogen-rich precursors; however, systematic investigations of their synthesis mechanisms have been rarely reported.

View Article and Find Full Text PDF

A neoteric smartphone-assisted colorimetric and fluorometric dual-mode probe based on anthraquinone derived Schiff base for wide-range pH and Cu/S determination in bioimaging.

Biosens Bioelectron

December 2024

School of Chemistry and Chemical Engineering, Institute of Environmental Science, Shanxi University, Taiyuan, 030006, PR China. Electronic address:

The fluctuation of ion content has an important effect on human health and ecological environment. Herein, a novel colorimetric and fluorescent dual mode probe (DMHB) has been designed via the imine bond bridging of anthraquinone derivative dye and salicyl hydrazide. The DMHB displays significance wide-range pH dependent spectral behavior (pKa 5.

View Article and Find Full Text PDF

Glutathione (GSH) is a key biomarker closely associated with cancer, and its content varies greatly between normal cells and cancer cells. However, intracellular detection of GSH was challenging because existing probes not only have a long detection time but also have fluorescence in the blue-green region that overlaps with the biological matrix's spontaneous fluorescence, thus affecting the detection accuracy. Therefore, a new red fluorescent nano-probe was needed to rapidly and accurately detected GSH within the biological matrix.

View Article and Find Full Text PDF

Glutathione (GSH) plays a vital role in the regulation of intracellular functions which alterations in physiological glutathione levels are associated to various diseases. Molecular bioimaging is a sensitive method for GSH detection, but challenges persist in the development of fluorescent probes, mainly concerning long-term tracking of intracellular GSH concentration because of aggregation of molecular probes and their washout in cells. Engineered nanomaterials have shown great promise for increasing the disease diagnosis accuracy.

View Article and Find Full Text PDF

QM/MM Calculations on Excited-State Proton Transfer and Photoisomerization of a Red Fluorescent Protein mKeima with Large Stokes Shift.

Biochemistry

December 2024

Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China.

Large Stokes shift red fluorescent proteins (LSS-RFPs) are of growing interest for multicolor bioimaging applications. However, their photochemical mechanisms are not fully understood. Here, we employed the QM(XDW-CASPT2//CASSCF)/MM method to investigate the excited-state proton transfer and photoisomerization processes of the LSS-RFP mKeima starting from its cis neutral isomer.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!