Probing nearby molecular vibrations with lanthanide-doped nanocrystals.

Nanoscale

Inorganic Chemistry and Catalysis group, Debye Institute for Nanomaterials Science and Institute for Sustainable and Circular Chemistry, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands.

Published: October 2023

The photoluminescence (PL) of lanthanide-doped nanocrystals can be quenched by energy transfer to vibrations of molecules located within a few nanometers from the dopants. Such short-range electronic-to-vibrational energy transfer (EVET) is often undesired as it reduces the photoluminescence efficiency. On the other hand, EVET may be exploited to extract information about molecular vibrations in the local environment of the nanocrystals. Here, we investigate the influence of solvent and gas environments on the PL properties of NaYF:Er,Yb upconversion nanocrystals. We relate changes in the PL spectrum and excited-state lifetimes in different solvents and their deuterated analogues to quenching of specific lanthanide levels by EVET to molecular vibrations. Similar but weaker changes are induced when we expose a film of nanocrystals to a gas environment with different amounts of HO or DO vapor. Quenching of green- and red-emitting levels of Er can be explained in terms of EVET-mediated quenching that involves molecular vibrations with energies resonant with the gap between the energy levels of the lanthanide. Quenching of the near-infrared-emitting level is more complex and may involve EVET to combination-vibrations or defect-mediated quenching. EVET-mediated quenching holds promise as a mechanism to probe the local chemical environment-both for nanocrystals dispersed in a liquid and for nanocrystals exposed to gaseous molecules that adsorb onto the nanocrystal surface.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10600830PMC
http://dx.doi.org/10.1039/d3nr02997bDOI Listing

Publication Analysis

Top Keywords

molecular vibrations
16
lanthanide-doped nanocrystals
8
energy transfer
8
evet-mediated quenching
8
nanocrystals
7
quenching
6
vibrations
5
probing nearby
4
molecular
4
nearby molecular
4

Similar Publications

The reaction of terrylene in p-terphenyl with molecular oxygen is reinvestigated by TIRF-microscopy with λexc = 488 nm or λexc = 561 nm and 488 nm. A similar range of fluorescent products is obtained under both experimental conditions with a reaction quantum yield Φr > 10-7 for those molecules which undergo the photoreaction. The majority of these oxygen-susceptible molecules reacts via an electronically relaxed, dark intermediate, presumably an endoperoxide, with a lifetime of ~ 20 s.

View Article and Find Full Text PDF

Full-dimensional accurate potential energy surface and dynamics for the unimolecular isomerization reaction CH3NC ⇌ CH3CN.

J Chem Phys

January 2025

School of Chemistry and Chemical Engineering and Chongqing Key Laboratory of Chemical Theory and Mechanism, Chongqing University, Chongqing 401331, China.

The reaction CH3NC ⇌ CH3CN, a model reaction for the study of unimolecular isomerization, is important in astronomy and atmospheric chemistry and has long been studied by numerous experiments and theories. In this work, we report the first full-dimensional accurate potential energy surface (PES) of this reaction by the permutation invariant polynomial-neural network method based on 30 974 points, whose energies are calculated at the CCSD(T)-F12a/AVTZ level. Then, ring polymer molecular dynamics is used to derive the free energy barrier of the reaction at the experimental temperature range of 472.

View Article and Find Full Text PDF

The properties of the hydrogen fluid at high pressures are still of interest to the scientific community. The experimentally unreachable dynamical properties could provide new insights into this field. In 2020 [Cheng et al.

View Article and Find Full Text PDF

Suppression of Photoexcited Small Polarons-Mediated Energy Transfer to Boost Photoluminescence of Lanthanide-Titanium Nanoclusters.

Nano Lett

January 2025

State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China.

Lanthanide (Ln)-titanium-based molecular nanoclusters (NCs) have attracted much attention due to their atomically precise total structure and promising optical behavior, while there is still minimal cognition of structure-dictated electron relaxation dynamics in such an NCs regime with unsatisfied photoluminescence quantum yield (PLQY, in general below 20%). Herein, the photoexcited small polarons (i.e.

View Article and Find Full Text PDF

How Structure and Hydrostatic Pressure Impact Excited-State Properties of Organic Room-Temperature Phosphorescence Molecules: A Theoretical Perspective.

J Phys Chem A

January 2025

Shandong Province Key Laboratory of Medical Physics and Image Processing Technology, School of Physics and Electronics, Shandong Normal University, Jinan 250014, China.

Organic room-temperature phosphorescence (RTP) emitters with long lifetimes, high exciton utilizations, and tunable emission properties show promising applications in organic light-emitting diodes (OLEDs) and biomedical fields. Their excited-state properties are highly related to single molecular structure, aggregation morphology, and external stimulus (such as hydrostatic pressure effect). To gain a deeper understanding and effectively regulate the key factors of luminescent efficiency and lifetime for RTP emitters, we employ the thermal vibration correlation function (TVCF) theory coupled with quantum mechanics/molecular mechanics (QM/MM) calculations to investigate the photophysical properties of three reported RTP crystals (Bp-OEt, Xan-OEt, and Xan-OMe) with elastic/plastic deformation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!