The influenza A virus genome consists of eight distinct viral RNAs (vRNAs) that are typically packaged into a single virion as an octameric complex. How this genome complex is assembled and incorporated into the virion is poorly understood, but previous research suggests a coordinative role for packaging signals present in all vRNAs. Here, we show that disruption of two packaging signals in a model H7N7 influenza A virus results in a mixture of virions with unusual vRNA content, including empty virions, virions with one to four vRNAs, and virions with octameric complexes composed of vRNA duplicates. Our results suggest that (i) the assembly of error-free octameric complexes proceeds through a series of defined vRNA sub-complexes and (ii) virions can bud without incorporating complete octameric complexes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10617545PMC
http://dx.doi.org/10.1128/jvi.01076-23DOI Listing

Publication Analysis

Top Keywords

influenza virus
12
packaging signals
12
octameric complexes
12
virions
5
disruption influenza
4
virus packaging
4
signals misassembled
4
misassembled genome
4
complexes
4
genome complexes
4

Similar Publications

Influenza surveillance is important for monitoring influenza virus circulation and disease burden to inform influenza prevention and control measures. The aim of this study was to describe the epidemiology and to estimate the incidence of influenza in two communities in West Java, Indonesia, before and after the 2009 H1N1 pandemic. A population-based surveillance study in the community health care setting was conducted to estimate the annual incidence of influenza.

View Article and Find Full Text PDF

Rapid and sensitive detection of virus-related antigens and antibodies is crucial for controlling sudden seasonal epidemics and monitoring neutralizing antibody levels after vaccination. However, conventional detection methods still face challenges related to compatibility with rapid, highly sensitive, and compact detection apparatus. In this work, we developed a Si nanowire (SiNW)-based field-effect biosensor by precisely controlling the process conditions to achieve the required electrical properties via complementary metal-oxide-semiconductor (CMOS)-compatible nanofabrication processes.

View Article and Find Full Text PDF

G-quadruplex-forming small RNA inhibits coronavirus and influenza A virus replication.

Commun Biol

January 2025

Division of Microbiology, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, 4-4-1, Komatsuhima, Aoba-ku, Sendai, Miyagi, 981-8558, Japan.

Future pandemic threats may be caused by novel coronaviruses and influenza A viruses. Here we show that when directly added to a cell culture, 12mer guanine RNA (G12) and its phosphorothioate-linked derivatives (G12(S)), rapidly entered cytoplasm and suppressed the propagation of human coronaviruses and influenza A viruses to between 1/100 and nearly 1/1000 of normal virus infectivity without cellular toxicity and induction of innate immunity. Moreover, G12(S) alleviated the weight loss caused by coronavirus infection in mice.

View Article and Find Full Text PDF

PROTAR Vaccine 2.0 generates influenza vaccines by degrading multiple viral proteins.

Nat Chem Biol

January 2025

State Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.

Manipulating viral protein stability using the cellular ubiquitin-proteasome system (UPS) represents a promising approach for developing live-attenuated vaccines. The first-generation proteolysis-targeting (PROTAR) vaccine had limitations, as it incorporates proteasome-targeting degrons (PTDs) at only the terminal ends of viral proteins, potentially restricting its broad application. Here we developed the next-generation PROTAR vaccine approach, referred to as PROTAR 2.

View Article and Find Full Text PDF

Selected microwave irradiation effectively inactivates airborne avian influenza A(H5N1) virus.

Sci Rep

January 2025

The Edgar L. and Harold H. Buttner Chair of Electrical Engineering and Computer Sciences, University of California, Berkeley, CA, USA.

The highly pathogenic avian influenza A(H5N1) virus threatens animal and human health globally. Innovative strategies are crucial for mitigating risks associated with airborne transmission and preventing outbreaks. In this study, we sought to investigate the efficacy of microwave inactivation against aerosolized A(H5N1) virus by identifying the optimal frequency band for a 10-min exposure and evaluating the impact of varying exposure times on virus inactivation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!