In maize (Zea mays) and other grasses (Poaceae), the leaf primordia are deeply ensheathed and rolled within the leaf whorl, making it difficult to study early leaf development. Here, we describe methods for preparing transverse sections and unrolled whole mounts of maize leaf primordia for fluorescence and confocal imaging. The first method uses a wire stripper to remove the upper portions of older leaves, exposing the tip of the leaf primordium and allowing its measurement for more accurate transverse section sampling. The second method uses clear, double-sided nano tape to unroll and mount whole-leaf primordia for imaging. We show the utility of the two methods in visualizing and analyzing fluorescent protein reporters in maize. These methods provide a solution to the challenges presented by the distinctive morphology of maize leaf primordia and will be useful for visualizing and quantifying leaf anatomical and developmental traits in maize and other grass species.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3791/65239 | DOI Listing |
Ann Bot
December 2024
Laboratório de Anatomia Vegetal (LAVeg), Federal University of Rio Grande do Sul, Av. Bento Gonçalves, 9500, Porto Alegre, RS, Brazil.
Background And Aims: Recent studies have documented numerous morphoanatomical variations for the seed coat in Bromeliaceae. However, the structural diversity and character evolution of the embryo within this family remain largely unexplored. Given the embryo's significance in plant diversification, this research aims to investigate the morphology and key anatomical features of Bromeliaceae embryos, providing insights into character evolution, taxonomic applications, and reproductive biology.
View Article and Find Full Text PDFPlants (Basel)
December 2024
School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA.
The reduction of leaves was a key event in the evolution of the succulent syndrome in Cactaceae, evolving from large, photosynthetic leaves in to nearly suppressed microscopic foliar buds in succulent . This leaf reduction was accompanied by the development of spines. Early histological studies, dating back a century, of the shoot apical meristem (SAM) in several species concluded that, in succulent cacti, axillary buds became areoles and leaves transformed into spines.
View Article and Find Full Text PDFNew Phytol
December 2024
Departamento de Ciências Biológicas, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Piracicaba, SP, 13418-900, Brazil.
Front Plant Sci
November 2024
Institute of Plasma Technology, Korea Institute of Fusion Energy, Gunsan, Republic of Korea.
Introduction: Recent advancements in agricultural technology have highlighted the potential of eco-friendly innovations, such as plasma-activated water (PAW), for enhancing seed germination, growth, and biomass production.
Methods: In this study, we investigated the effects of PAW irrigation on young sorghum seedlings through phenotypic and transcriptional analyses. We measured growth parameters, including seedling height, stem thickness, and biomass, across five sorghum varieties: BTx623, Sodamchal, Noeulchal, Baremae, and Hichal.
Plant Dis
October 2024
Wuhan Academy of Agriculture Science, Institute of Crop Science, Wuhan, Hubei , China;
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!