The blood-brain barrier (BBB) protects the brain parenchyma against harmful pathogens in the blood. The BBB consists of the neurovascular unit, comprising pericytes, astrocytic foot processes, and tightly adhered endothelial cells. Here, the brain endothelial cells form the first line of barrier against blood-borne pathogens. In conditions like cancer and neuroinflammation, circulating factors in the blood can disrupt this barrier. Disease progression significantly worsens post barrier disruption, which permits access to or impairment of regions of the brain. This significantly worsens the prognoses, particularly due to limited treatment options available at the level of the brain. Hence, emerging studies aim to investigate potential therapeutics that can prevent these detrimental factors in the blood from interacting with the brain endothelial cells. The commercially available Electric Cell-Substrate Impedance Sensing (ECIS) and cellZscope instruments measure the impedance across cellular monolayers, such as the BBB endothelium, to determine their barrier strength. Here we detail the use of both biosensors in assessing brain endothelial barrier integrity upon the addition of various stimuli. Crucially, we highlight the importance of their high-throughput capability for concurrent investigation of multiple variables and biological treatments.

Download full-text PDF

Source
http://dx.doi.org/10.3791/65959DOI Listing

Publication Analysis

Top Keywords

brain endothelial
16
endothelial cells
12
endothelial barrier
8
barrier integrity
8
factors blood
8
brain
7
barrier
7
endothelial
5
measuring changes
4
changes brain
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!