A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Valorization of Glycerol through Plasma-Induced Transformation into Formic Acid. | LitMetric

Valorization of Glycerol through Plasma-Induced Transformation into Formic Acid.

ChemSusChem

CCRC, Physical Science and Engineering Division (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955, Saudi Arabia.

Published: February 2024

To cope with climate change issues, a significant shift is required in worldwide energy sources. Hydrogen and bioenergy are being considered as alternatives toward a carbon neutral society, making formic acid - a hydrogen carrying product of glycerol - of interest for the valorization of glycerol. Here we investigate the plasma-induced transformation of glycerol in an aqueous nanosecond repetitively pulsed discharge reactor. We found that the water content in the aqueous mixture fulfilled a crucial role in both the gas phase (as a source of OH radicals) and the liquid phase (as a promotor of the dissolved OH radical's mobility and reactivity). The formic acid produced was linearly proportional to the specific input energy, and the most cost-effective production of formic acid was found with 10 % v/v glycerol in the aqueous mixture. A plausible reaction pathway was proposed, consisting of the OH radical-driven dehydrogenation and dehydration of glycerol. The results provide a fundamental understanding of plasma-induced transformation of glycerol to formic acid and insights for future practical applications.

Download full-text PDF

Source
http://dx.doi.org/10.1002/cssc.202300925DOI Listing

Publication Analysis

Top Keywords

formic acid
20
plasma-induced transformation
12
valorization glycerol
8
transformation glycerol
8
glycerol aqueous
8
aqueous mixture
8
glycerol
6
formic
5
acid
5
glycerol plasma-induced
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!