Polymer semiconductors frequently form crystals or mesophases with lamellae, that comprise alternating layers of stacked backbones and side chains. Controlling lamellar orientation in films is essential for obtaining efficient charge carrier transport. Herein, lamellar orientation is investigated in an application-relevant setup: lamellae assembled on a substrate that strongly favors face-on orientation, but exposed to a film surface that promotes orientation along an "easy" direction, other than face on. It is assumed that the face-on order propagates from the substrate, but the lamellae bend to reduce their surface energy. A qualitative free-energy model is developed. The deformation is investigated as a function of film thickness, effective Young modulus, anchoring coefficient, and easy direction at the free surface. The calculations highlight the importance of elastic constants - lamellae can substantially deform already when Young moduli are only an order of magnitude smaller than the values that are reported for crystals. Softer Young moduli are expected when lamellar assembly occurs in a non-solidified mesophase that can be an equilibrium or (more speculatively) a transient state prior to crystallization. The alternative scenario of a two-layered film is also evaluated, where edge-on and face-on grains form, respectively, at the free surface and substrate.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/marc.202300437 | DOI Listing |
Soft Matter
December 2024
Departament de Física de la Matèria Condensada, Universitat de Barcelona, Martí i Franqués 1, 08028 Barcelona, Spain.
The potential applications of block copolymer thin films, utilising their self-assembly capabilities, are enhanced when achieving long-range ordering. In this study we explain the experimental alignment of lamellae under shear flow findings [S. Pujari , 2012, , 5258] and classify the alignment mechanisms based on shear rate and segregation, uncovering similarities to the systems subjected to electric fields, suggesting a common pathway of lamellae orientations.
View Article and Find Full Text PDFBiomed Opt Express
December 2024
Regenerative Bioscience Center, Rhodes Center for ADS, University of Georgia, Athens, GA 30602, USA.
Polarization-resolved second harmonic generation (pSHG) is a label-free method that has been used in a range of tissue types to describe collagen orientation. In this work, we develop pSHG analysis techniques for investigating cranial bone collagen assembly defects occurring in a mouse model of hypophosphatasia (HPP), a metabolic bone disease characterized by a lack of bone mineralization. After observing differences in bone collagen lamellar sheet structures using scanning electron microscopy, we found similar alterations with pSHG between the healthy and HPP mouse collagen lamellar sheet organization.
View Article and Find Full Text PDFACS Appl Mater Interfaces
December 2024
School of Materials Science and Engineering, Taiyuan University of Science and Technology, Taiyuan 030024, China.
BiSb alloys are promising cryogenic thermoelectric materials for generator and refrigeration devices at temperatures below 200 K. Herein, we prepared highly (00) textured BiSb ( = 0-0.05) ribbons by a melt-spinning technique and tuned its band structure with a Dirac electronic phase transition via Sb doping for improving the thermoelectric performance.
View Article and Find Full Text PDFAdv Sci (Weinh)
December 2024
Department of Anatomy, Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, 510515, P. R. China.
Peripheral nerve injury (PNI) and myocardial infarction (MI) are the two most clinically common soft excitable tissue injuries. Both nerve and cardiac tissues exhibit structural anisotropy and electrophysiological activity, providing a wide range of biophysical cues for cell and tissue repair. However, balancing microstructural anisotropy, electroactivity, and biocompatibility is challenging.
View Article and Find Full Text PDFPhys Chem Chem Phys
December 2024
Department of Physics, University of Colorado, Boulder, Colorado, 80309, USA.
We show that stable, freely suspended liquid crystal films can be made from the ferroelectric nematic (N) phase and from the recently discovered polar, lamellar SmZ and SmA phases. The N films display two-dimensional, smectic-like parabolic focal conic textures comprising director/polarization bend that are a manifestation of the electrostatic suppression of director splay in the film plane. In the SmZ and SmA phases, the smectic layers orient preferentially normal to the film surfaces, a condition never found in typical thermotropic or lyotropic lamellar LC phases, with the SmZ films exhibiting focal-conic fan textures mimicking the appearance of typical smectics in glass cells when the layers are oriented normal to the plates, and the SmA films showing a texture of plaquettes of uniform in-plane orientation where both bend and splay are suppressed, separated by grain boundaries.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!