A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Removing non-nuclei information from histopathological images: A preprocessing step towards improving nuclei segmentation methods. | LitMetric

Removing non-nuclei information from histopathological images: A preprocessing step towards improving nuclei segmentation methods.

J Pathol Inform

Computer Imaging and Medical Applications Laboratory (CIM@LAB), Universidad Nacional de Colombia, Bogotá, Colombia.

Published: April 2023

Disease interpretation by computer-aided diagnosis systems in digital pathology depends on reliable detection and segmentation of nuclei in hematoxylin and eosin (HE) images. These 2 tasks are challenging since appearance of both cell nuclei and background structures are very variable. This paper presents a method to improve nuclei detection and segmentation in HE images by removing tiles that only contain background information. The method divides each image into smaller patches and uses their projection to the noiselet space to capture different spatial features from non-nuclei background and nuclei structures. The noiselet features are clustered by a -means algorithm and the resultant partition, defined by the cluster centroids, is herein named the noiselet code-book. A part of an image, a tile, is divided into patches and represented by the histogram of occurrences of the projected patches in the noiselet code-book. Finally, with these histograms, a classifier learns to differentiate between nuclei and non-nuclei tiles. By applying a conventional watershed-marked method to detect and segment nuclei, evaluation consisted in comparing pure watershed method against denoising-plus-watershed in an open database with 8 different types of tissues. The averaged F-score of nuclei detection improved from 0.830 to 0.86 and the dice score after segmentation increased from 0.701 to 0.723.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10550762PMC
http://dx.doi.org/10.1016/j.jpi.2023.100315DOI Listing

Publication Analysis

Top Keywords

nuclei
8
detection segmentation
8
nuclei detection
8
noiselet code-book
8
removing non-nuclei
4
non-nuclei histopathological
4
histopathological images
4
images preprocessing
4
preprocessing step
4
step improving
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!