A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Peristalsis-Associated Mechanotransduction Drives Malignant Progression of Colorectal Cancer. | LitMetric

Introduction: In the colorectal cancer (CRC) tumor microenvironment, cancerous and precancerous cells continuously experience mechanical forces associated with peristalsis. Given that mechanical forces like shear stress and strain can positively impact cancer progression, we explored the hypothesis that peristalsis may also contribute to malignant progression in CRC. We defined malignant progression as enrichment of cancer stem cells and the acquisition of invasive behaviors, both vital to CRC progression.

Methods: We leveraged our peristalsis bioreactor to expose CRC cell lines (HCT116), patient-derived xenograft (PDX1,2) lines, or non-cancerous intestinal cells (HIEC-6) to forces associated with peristalsis in vitro. Cells were maintained in static control conditions or exposed to peristalsis for 24 h prior to assessment of cancer stem cell (CSC) emergence or the acquisition of invasive phenotypes.

Results: Exposure of HCT116 cells to peristalsis significantly increased the emergence of LGR5 CSCs by 1.8-fold compared to static controls. Peristalsis enriched LGR5 positivity in several CRC cell lines, notably significant in mutant lines. In contrast, peristalsis failed to increase LGR5 in non-cancerous intestinal cells, HIEC-6. LGR5 emergence downstream of peristalsis was dependent on ROCK and Wnt activity, and not YAP1 activation. Additionally, HCT116 cells adopted invasive morphologies when exposed to peristalsis, with increased filopodia density and epithelial to mesenchymal gene expression, in a Wnt dependent manner.

Conclusions: Peristalsis associated forces drive malignant progression of CRC via ROCK, YAP1, and Wnt-related mechanotransduction.

Supplementary Information: The online version contains supplementary material available at 10.1007/s12195-023-00776-w.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10550901PMC
http://dx.doi.org/10.1007/s12195-023-00776-wDOI Listing

Publication Analysis

Top Keywords

malignant progression
16
peristalsis
11
colorectal cancer
8
mechanical forces
8
forces associated
8
associated peristalsis
8
progression crc
8
cancer stem
8
acquisition invasive
8
crc cell
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!