To effectively classify tree species within datasets characterized by limited samples, we introduced a novel approach named DenseNetBL, founded upon the fusion of the DenseNet architecture and a pivotal bottleneck layer. This bottleneck layer, encompassing a compact convolutional component, played a central role in our methodology. The evaluation of DenseNetBL was conducted under varying conditions, encompassing small-sample tree species data, extensive remote sensing datasets, and state-of-the-art classifiers. Furthermore, a quantitative assessment was executed to extract tree species areas. This was achieved by quantifying pixel areas within manually delineated tree species maps and classifier-generated counterparts. The findings of our study indicated that, in scenarios devoid of pre-trained weights, DenseNetBL consistently outperformed its DenseNet counterpart with equivalent layer numbers. In the realm of small-sample situations, both the Swin Transformer and Vision Transformer exhibited inferior performance when juxtaposed with DenseNet and DenseNetBL. Remarkably, among the shallow architectures, DenseNet33BL showcased superior aptitude for small-sample tree species classification, culminating in the most commendable results (Overall Accuracy (OA) = 0.901, Kappa = 0.892). Conversely, the Vision Transformer yielded the least favorable classification outcomes (OA = 0.767, Kappa = 0.708). The amalgamation of DenseNet33BL and simple linear iterative clustering emerged as the optimal strategy for attaining robust tree species area extraction results across two prototypical forests. In contrast, DenseNet121 exhibited suboptimal performance in the same forests, attaining the least satisfactory tree species area extraction results. These comprehensive findings underscore the efficacy of our DenseNetBL approach in addressing the challenges associated with small-sample tree species classification and accurate tree species area extraction.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10556787 | PMC |
http://dx.doi.org/10.1016/j.heliyon.2023.e20467 | DOI Listing |
Syst Biol
January 2025
Division of Ecology & Evolution, Research School of Biology, Australian National University, Canberra ACT 0200 Australia.
Different species concepts and their associated criteria have been used to delimit species boundaries, such as the absence of gene flow for the biological species concept and the presence of morphological distinction for the morphological species concept. The need for different delimitation criteria largely reflects the fact that species are generated under various speciation mechanisms. A key question is how to make species delimitation consistent in a species group, especially when we want to delimit the species boundaries over many newly discovered evolutionary lineages and add these new lineages into a comparative analysis.
View Article and Find Full Text PDFSci Rep
January 2025
College of Ecology and Environment, Hainan University, Haikou, 570228, China.
Agroforestry systems are known to enhance soil health and climate resilience, but their impact on greenhouse gas (GHG) emissions in rubber-based agroforestry systems across diverse configurations is not fully understood. Here, six representative rubber-based agroforestry systems (encompassing rubber trees intercropped with arboreal, shrub, and herbaceous species) were selected based on a preliminary investigation, including Hevea brasiliensis intercropping with Alpinia oxyphylla (AOM), Alpinia katsumadai (AKH), Coffea arabica (CAA), Theobroma cacao (TCA), Cinnamomum cassia (CCA), and Pandanus amaryllifolius (PAR), and a rubber monoculture as control (RM). Soil physicochemical properties, enzyme activities, and GHG emission characteristics were determined at 0-20 cm soil depth.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Range and Watershed Management, Faculty of Agriculture, Ilam University, Ilam, Iran.
Soil seed bank (SSB) is valuable reserves of seeds hidden in the soil and are especially important for the preservation and establishment of vegetation under adverse environmental conditions. However, there is a lack of knowledge on the effects of restoration measures on SSB, especially in arid ecosystems. Here, we assess the impacts of oil mulching (1 and 3 years after mulching) and plantations (15-year-old) on the diversity and composition of SSB and aboveground vegetation (AGV) in comparison with those in non-restored areas (i.
View Article and Find Full Text PDFGenomics
January 2025
State Key Laboratory of Tree Genetics and Breeding, Laboratory of Forest Silviculture and Tree Cultivation, Research Institute of Forestry, Chinese Academy of Forestry, China. Electronic address:
Gleditsia sinensis Lam. (G. sinensis) as an important species within the Leguminosae family, has been utilized in Chinese medicine for centuries, and its thorns serve as a chief medicinal ingredient.
View Article and Find Full Text PDFCurr Biol
January 2025
Department of Coevolution of Land Use and Urbanisation, Max Planck Institute of Geoanthropology, 07745 Jena, Germany; Department of Archaeology, Max Planck Institute of Geoanthropology, 07745 Jena, Germany; School of Archaeology, University of the Philippines, Quezon City 1101, the Philippines. Electronic address:
The Amazon rainforest is characterized by a limited number of hyperdominant trees that play an oversized role in its ecosystems, nutrient cycle, and rainfall production. Some of these, such as the Brazil nut, appear to have been intensively exploited and dispersed by Indigenous populations since their earliest arrival in this part of South America around 13,000 years ago. However, the genetic diversity-and geographic structure-of these species remains poorly understood, as does their exact relationship with past human land use.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!