Active pharmaceutical ingredients (APIs) and excipients are main drug constituents that ought to be identified qualitatively and quantitatively. Raman spectroscopy is aimed to be an efficient technique for pharmaceutical analysis in solid dosage forms. This technique can successfully be used in terms of qualitative and quantitative analysis of pharmaceutical drugs, their APIs, and excipients. In the proposed research, Raman spectroscopy has been employed to quantify Azithromycin based on its distinctive Raman spectral features by using commercially prepared formulations with altered API concentrations and excipients as well. Along with Raman spectroscopy, principal component analysis and partial least squares regression (PLSR), two multivariate data analysis techniques have been used for the identification and quantification of the API. For PLSR, goodness of fit of the model () was found to be 0.99, whereas root mean square error of calibration was 0.46 and root mean square error of prediction was 2.42, which represent the performance of the model. This study highlights the efficiency of Raman spectroscopy in the field of pharmaceutics by preparing pharmaceutical formulations of any drug to quantify their API and excipients to compensate for the commercially prepared concentrations.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10552109PMC
http://dx.doi.org/10.1021/acsomega.3c05245DOI Listing

Publication Analysis

Top Keywords

raman spectroscopy
20
qualitative quantitative
8
quantitative analysis
8
solid dosage
8
apis excipients
8
commercially prepared
8
root square
8
square error
8
raman
6
analysis
5

Similar Publications

Light-driven molecular rotary motors are nanometric machines able to convert light into unidirectional motions. Several types of molecular motors have been developed to better respond to light stimuli, opening new avenues for developing smart materials ranging from nanomedicine to robotics. They have great importance in the scientific research across various disciplines, but a detailed comprehension of the underlying ultrafast photophysics immediately after photo-excitation, that is, Franck-Condon region characterization, is not fully achieved yet.

View Article and Find Full Text PDF

Here we describe the synthesis and evaluation of a molecular corrosion sensor that can be applied in situ in aerospace coatings, then used to detect corrosion after the coating has been applied. A pH-sensitive molecule, 4-mercaptopyridin (4-MP), is attached to a gold nanoparticle to allow surface-enhanced Raman-scattering (SERS) for signal amplification. These SERS nanoparticles, when combined with an appropriate micron-sized carrier system, are incorporated directly into an MIL-SPEC coating and used to monitor the process onset and progression of corrosion using pH changes occurring at the metal-coating interface.

View Article and Find Full Text PDF

Zinc oxide nanoparticles (ZnO NPs) with varying levels of nitrogen (N) doping were synthesized using a straightforward sol-gel approach. The morphology and microstructure of the N-doped ZnO NPs were examined through techniques such as SEM, XRD, photoluminescence, and Raman spectroscopy. The characterization revealed visible changes in the morphology and microstructure resulting from the incorporation of nitrogen into the ZnO lattice.

View Article and Find Full Text PDF

With the fast-fashion trend, an increasing number of discarded clothing items are being eliminated at the stages of both pre-consumer and post-consumer each year. The linear economy produces large volumes of waste, which harm environmental sustainability. This study addresses the pressing need for efficient textile recycling in the circular economy (CE).

View Article and Find Full Text PDF

The feasibility of the two methodologies was confirmed to compare the results of determining mung bean origins using Raman and Near-Infrared (NIR) spectroscopy. Spectra from mung beans collected in Baicheng City, Jilin Province; Dorbod Mongol Autonomous, Tailai County, Heilongjiang Province; and Sishui County, Shandong Province, China, were analyzed. We established a traceability model using Principal Component Analysis combined with the K-nearest neighbor method to compare the efficacy of these methods in discriminating the origins of the mung beans.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!