A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Promising Experimental Anti-SARS-CoV-2 Agent "SLL-0197800": The Prospective Universal Inhibitory Properties against the Coming Versions of the Coronavirus. | LitMetric

Promising Experimental Anti-SARS-CoV-2 Agent "SLL-0197800": The Prospective Universal Inhibitory Properties against the Coming Versions of the Coronavirus.

ACS Omega

Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 Cultural West Road, Jinan, Shandong Province 250012, PR China.

Published: October 2023

Isoquinoline derivatives having some nucleosidic structural features are considered as candidate choices for effective remediation of the different severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections and their following disease, the coronavirus disease 2019 (COVID-19). SLL-0197800 is a recently discovered isoquinoline compound with potential strong universal anticoronaviral activities against SARS-CoV-2 and its previous strains. SLL-0197800 nonspecifically hits the main protease (M) enzyme of the different coronaviruses. Herein in the present study, we tested the probability of the previous findings of this experimental agent to be extended to comprise any coronavirus through concurrently disrupting the mutable-less replication enzymes like the RNA-dependent RNA polymerase (RdRp) protein as well as the 3'-to-5' exoribonuclease (ExoN) protein. The anti-RdRp/ExoN assay revealed the potent inhibitory activities of SLL-0197800 on the coronaviral replication with minute values of anti-RdRp and anti-RdRp/ExoN EC (about 0.16 and 0.27 μM, respectively). The preliminary outcomes significantly supported these biochemical findings. To put it simply, the present important results of these extension efforts greatly reinforce and extend the SLL-0197800's preceding findings, showing that the restraining/blocking actions (i.e., inhibitory activities) of this novel investigational anti-SARS-CoV-2 agent against the M protein could be significantly extended against other copying and multiplication enzymes such as RdRp and ExoN, highlighting the potential use of SLL-0197800 against the coming versions of the homicidal coronavirus (if any), i.e., revealing the probable nonspecific anticoronaviral features and qualities of this golden experimental drug against nearly any coronaviral strain, for instance, SARS-CoV-3.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10552502PMC
http://dx.doi.org/10.1021/acsomega.2c08073DOI Listing

Publication Analysis

Top Keywords

anti-sars-cov-2 agent
8
coming versions
8
inhibitory activities
8
coronavirus
5
promising experimental
4
experimental anti-sars-cov-2
4
agent "sll-0197800"
4
"sll-0197800" prospective
4
prospective universal
4
universal inhibitory
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!