Hydrogenation is a catalytic process that has the potential to facilitate sustainable chemical production. In this work, a model monoaromatic hydrocarbon, phenyldodecane (PDD), comprising an aromatic ring with a long aliphatic side chain has been chosen as representative of a typical species involved in hydrogenation and hydrocracked at a high pressure and temperature over a platinum catalyst in a bespoke benchtop mini-reactor. Gas chromatography-mass spectrometry (GC-MS), Fourier transform infrared (FTIR) spectroscopy, UV-vis spectroscopy, and nuclear magnetic resonance (NMR) spectroscopy were employed to analyze the changes that took place after hydrocracking for different time periods. By combining the results from these sensitive spectroscopic tools, it was found that along with the saturation of the aromatic ring of PDD by hydrogen addition, new molecules were formed via ring opening and catalytic cracking. For comparison purposes, the spectra of the samples post hydrogenation were compared with those of cyclohexylnonadecane (CHND), which has a saturated six-membered ring and a long aliphatic tail.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10552099 | PMC |
http://dx.doi.org/10.1021/acsomega.3c03833 | DOI Listing |
Appl Environ Microbiol
January 2025
Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA.
Lignin contains a variety of interunit linkages, leading to a range of potential decomposition products that can be used as carbon and energy sources by microbes. β-O-4 linkages are the most common in native lignin, and associated catabolic pathways have been well characterized. However, the fate of the mono-aromatic intermediates that result from β-O-4 dimer cleavage has not been fully elucidated.
View Article and Find Full Text PDFBiodegradation
November 2024
Microbial Resources Division, Research Center for Chemistry, Biology and Agriculture (CPQBA), University of Campinas - UNICAMP, Av. Alexandre Cazellato, 999, Paulínia, SP, 13148-218, Brazil.
Spills of petroleum or its derivatives in the environment lead to an enrichment of microorganisms able to degrade such compounds. The interactions taking place in such microbial communities are complex and poorly understood, since they depend on multiple factors, including diversity and metabolic potential of the microorganisms and a broad range of fluctuating environmental conditions. In our previous study, a complete characterization, based on high-throughput sequencing, was performed in a jet-fuel plume using soil samples and in in-situ microcosms amended with hydrocarbons and exposed for 120 days.
View Article and Find Full Text PDFEnviron Pollut
October 2024
Engineering Training Center, Guizhou Minzu University, Guiyang, 550025, China.
Decabromodiphenyl ethane (DBDPE), as one of the important new brominated flame retardants, is widely utilized in a variety of plastic products. However, the pyrolysis mechanism of DBDPE remains uncertain. In this article, the evolution behavior of the main products during the thermal decomposition of DBDPE is investigated using density functional theory at the theoretical level of M06-2X/6-311++G(2df,p)//M06-2X/6-311+G(d).
View Article and Find Full Text PDFEnviron Sci Technol
April 2024
Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States.
Samples of brown carbon (BrC) material were collected from smoke emissions originating from wood pyrolysis experiments, serving as a proxy for BrC representative of biomass burning emissions. The acquired samples, referred to as "pyrolysis oil (PO)," underwent subsequent processing by thermal evaporation of their volatile compounds, resulting in a set of three additional samples with volume reduction factors of 1.33, 2, and 3, denoted as PO, PO, and PO.
View Article and Find Full Text PDFACS Omega
October 2023
Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom.
Hydrogenation is a catalytic process that has the potential to facilitate sustainable chemical production. In this work, a model monoaromatic hydrocarbon, phenyldodecane (PDD), comprising an aromatic ring with a long aliphatic side chain has been chosen as representative of a typical species involved in hydrogenation and hydrocracked at a high pressure and temperature over a platinum catalyst in a bespoke benchtop mini-reactor. Gas chromatography-mass spectrometry (GC-MS), Fourier transform infrared (FTIR) spectroscopy, UV-vis spectroscopy, and nuclear magnetic resonance (NMR) spectroscopy were employed to analyze the changes that took place after hydrocracking for different time periods.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!