Water resource accounting constitutes a fundamental approach for implementing sophisticated management of basin water resources. The quality of water plays a pivotal role in determining the liabilities associated with these resources. Evaluating the quality of water facilitates the computation of water resource liabilities during the accounting process. Traditional accounting methods rely on manual sorting and data analysis, which necessitate significant human effort. In order to address this issue, we leverage the remarkable feature extraction capabilities of convolutional operations to construct neural networks. Moreover, we introduce the self-attention mechanism module to propose an unsupervised deep clustering method. This method offers assistance in accounting tasks by automatically classifying the debt levels of water resources in distinct regions, thereby facilitating comprehensive water resource accounting. The methodology presented in this article underwent verification using three datasets: the United States Postal Service (USPS), Heterogeneity Human Activity Recognition (HHAR), and Association for Computing Machinery (ACM). The evaluation of Accuracy rate (ACC), Normalized Mutual Information (NMI), and Adjusted Rand Index (ARI) metrics yielded favorable results, surpassing those of K-means clustering, hierarchical clustering, and Density-based constraint extension (DCE). Specifically, the mean values of the evaluation metrics across the three datasets were 0.8474, 0.7582, and 0.7295, respectively.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10557482 | PMC |
http://dx.doi.org/10.7717/peerj-cs.1571 | DOI Listing |
Front Plant Sci
December 2024
Laboratory of Advanced Studies in Vertical Agriculture, Goiano Federal Institute of Education, Science and Technology, Rio Verde, Brazil.
Vertical Farming Systems (VFS) emerge as an approach to optimize plant growth in urban and controlled environments, by enabling sustainable and intensive production in reduced spaces. VFS allow for greater control over growing conditions, such as light, temperature and humidity, resulting in higher quality crops and with less use of resources, such as water and fertilizers. This research investigates the effects of different lighting regimes (Constant and Gaussian) and spectral qualities (white, RBW, blue and red) on the growth, photosynthesis, and biomass accumulation of lentil microgreens () in VFS.
View Article and Find Full Text PDFEnviron Sci Technol
January 2025
State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China.
Iodinated DBPs (I-DBPs), many more toxic than regulated chlorinated and/or brominated DBPs, are a major challenge in the supply of safe drinking water. While over 800 DBPs have been identified, the occurrence and precursors of toxic I-DBPs remain poorly understood. Herein, natural organic matter from two raw drinking waters was fractionated using ultrafiltration membranes into different groups based on molecular weight (MW).
View Article and Find Full Text PDFBMC Plant Biol
January 2025
Department of Crop, Soil and Environmental Sciences, University of Arkansas, Fayetteville, AR, USA.
Foxtail millet (Setaria italica L.) is nutritionally superior to other cereals of the family Poaceae, with the potential to perform better in marginal environments. In the present context of climate change, ecologically sound and low-input foxtail millet varieties can be chosen for agricultural sustainability.
View Article and Find Full Text PDFEnviron Monit Assess
January 2025
Sinopec Offshore Oilfield Services Company, Shanghai, 201208, China.
The concentration of trace elements in sediments is a critical element in the quality of nearshore environments. Geochemical background values are the normal concentrations of trace elements in the natural environment, and the use of different background values has resulted in different evaluations. Trace element (Cu, Pb, Zn, Cr, Cd, As, and Hg) concentration profiles along a sediment core were investigated to obtain background values and to assess the depositional processes and contamination levels in Laizhou Bay.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
January 2025
Laboratory of Applied Chemistry of Materials, Faculty of Science, Mohammed V University in Rabat, Avenue Ibn Batouta BP.1014, Rabat, Morocco.
A simple and inexpensive process from natural phosphate in the presence of Ag ions was used to develop AgO-loaded hydroxyapatite nanocomposites. The structural and textural characterization of the nanocomposites suggests that the AgO nanoparticles are well dispersed on the hydroxyapatite (HAp). The prepared nanocomposites show efficient Rhodamine B (RhB) dye photocatalytic degradation in water under visible and UV-visible light irradiation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!