High-resolution topographic information of landslide-prone areas plays an important role in accurate prediction and characterization of potential landslides and mitigation of landslides-associated hazards. This study presents an advanced geomorphological surveying system that integrates the light detection and ranging (LiDAR) with an unmanned aerial vehicle (UAV), a multi-rotor aerial vehicle in specific, for prediction, monitoring and forensic analysis of landslides, and for maintenance of debris-flow barriers. The test-flight over a vegetated area demonstrates that the integrated UAV-LiDAR system can provide high-resolution, three-dimensional (3D) LiDAR point clouds below canopy and vegetation in forest environments, overcoming the limitation of aerial photogrammetry and terrestrial LiDAR platforms. An algorithm is suggested to delineate the topographic information from the acquired 3D LiDAR point clouds, and the accuracy and performance of the developed UAV-LiDAR system are examined through field demonstration. Finally, two field demonstrations are presented: the forensic analysis of the recent Gokseong landslide event, and the sediment deposition monitoring for debris-flow barrier maintenance in South Korea. The developed surveying system is expected to contribute to geomorphological field surveys in vegetated, forest environments, particularly in a site that is not easily accessible.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10559992 | PMC |
http://dx.doi.org/10.1016/j.heliyon.2023.e20225 | DOI Listing |
Oecologia
January 2025
Department of Biological Sciences, Boise State University, Boise, ID, 83725, USA.
Light pollution disrupts the natural dark-light rhythmicity of the world and alters the spectral composition of the nocturnal sky, with far-reaching impacts on natural systems. While the costs of light pollution are now documented across scales and taxa, community-level mitigations for arthropods remain unclear. To test two light pollution mitigation strategies, we replaced all 32 streetlights in the largest visitor center in Grand Teton National Park (Wyoming, USA) to allow wireless control over each luminaries' color and brightness.
View Article and Find Full Text PDFBiol Lett
January 2025
Global Enviornmental and Genomic Health Sciences, University of South Florida, Tampa, FL 33612, USA.
The success of introduced species often relies on flexible traits, including immune system traits. While theories predict non-natives will have weak defences due to decreased parasite pressure, effective parasite surveillance remains crucial, as infection risk is rarely zero and the evolutionary novelty of infection is elevated in non-native areas. This study examines the relationship between parasite surveillance and cytokine responsiveness in native and non-native house sparrows, hypothesizing that non-natives maintain high pathogen surveillance while avoiding costly inflammation.
View Article and Find Full Text PDFFront Plant Sci
January 2025
College of Agriculture, Shanxi Agricultural University, Taigu, Shanxi, China.
Chlorophyll density (ChD) can reflect the photosynthetic capacity of the winter wheat population, therefore achieving real-time non-destructive monitoring of ChD in winter wheat is of great significance for evaluating the growth status of winter wheat. Derivative preprocessing has a wide range of applications in the hyperspectral monitoring of winter wheat chlorophyll. In order to research the role of fractional-order derivative (FOD) in the hyperspectral monitoring model of ChD, this study based on an irrigation experiment of winter wheat to obtain ChD and canopy hyperspectral reflectance.
View Article and Find Full Text PDFHeliyon
January 2025
School of Architecture, Tianjin University, 300072, Tianjin, China.
Air pollution has become a major challenge to global urban sustainable development, necessitating urgent solutions. Meteorological variables are key determinants of air quality; however, research on their impact across different urban gradients remains limited, and their mechanisms are largely unexplored. This study investigates the dynamic effects of meteorological variables on air quality under varying levels of urbanization using Kaohsiung City, Taiwan, as a case study.
View Article and Find Full Text PDFProc Biol Sci
January 2025
Faculty of Engineering, Hokkaido University, Sapporo 060-8628, Japan.
Woody and herbaceous plants are the main components of global terrestrial ecosystems, and their growth, adaptation and survival depend largely on the metabolism of shoots and roots. Therefore, understanding size-scaling of metabolic rates in woody and herbaceous plants, and in shoots and roots, is a fundamental issue in ecology. However, few empirical studies have examined metabolic scaling exponents across a wide range of plant sizes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!