Soluble epoxide hydrolase (sEH) is a therapeutic target for inflammation. In the present study, we isolated one new () and four known (-) compounds from the ethyl acetate fraction of hemp seed hulls. Their structures were elucidated as lignanamides via nuclear magnetic resonance and mass spectral analyses. All five compounds inhibited sEH activity, with half-maximal inhibitory concentrations of 2.7 ± 0.3 to 18.3 ± 1.0 μM. These lignanamides showed a competitive mechanism of inhibition via binding to sEH, with values below 10 μmol. Molecular simulations revealed that compounds - fit stably into the active site of sEH, and the key amino acid residues participating in their bonds were identified. It was confirmed that the potential inhibitors and continuously maintained a distance of 3.5 Å from one (Tyr383) and four amino (Asp335, Tyr383, Asn472, tyr516) residues, respectively. These findings provide a framework for the development of naturally derived sEH inhibitors.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10559049PMC
http://dx.doi.org/10.1016/j.heliyon.2023.e19772DOI Listing

Publication Analysis

Top Keywords

hemp seed
8
seed hulls
8
soluble epoxide
8
epoxide hydrolase
8
seh
5
inhibitory activity
4
activity lignanamides
4
lignanamides isolated
4
isolated hemp
4
hulls soluble
4

Similar Publications

Biopeptide-rich fermented hemp seeds: Boosting anti-inflammatory and immune responses through Lactiplantibacillus plantarum probiotic fermentation.

Int J Biol Macromol

December 2024

Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon, 24341, South Korea; Future F Biotech Co., Ltd, Chuncheon 24341, South Korea. Electronic address:

Cannabis sativa L. (hemp) seeds are increasingly recognized as a promising food source rich in phytochemicals that support inflammatory and immunological reactions. This study investigates whether fermentation with Lactiplantibacillus plantarum can further enhance these functional properties, paving the way for hemp seeds to be developed into potent functional food ingredients.

View Article and Find Full Text PDF

The margarine market is growing globally due to its lower cost, ease of availability, large-scale commercialization, and expanding market in the bakery and confectionary industries. Butter contains greater amounts of saturated fat and has been associated with cardiovascular diseases. The trans fats generated through the hydrogenation process have several adverse impacts on human health, such as the risk of atherosclerosis, coronary heart disease, postmenopausal breast cancer, vision and neurological system impairment, type II diabetes, and obesity.

View Article and Find Full Text PDF

Hempseed oil (HSO) is extremely rich in unsaturated fatty acids, especially linoleic (18:2 n-6) and α-linolenic (18:3 n-3) acids, which determine its high sensitivity to oxidative and photo-oxidative degradations that can lead to rancidity despite the presence of antioxidant compounds. The aim of this work was to evaluate which material/temperature/light solutions better preserve HSO quality during its shelf life and to test NIR as a rapid, non-destructive technique for monitoring oxidation phenomena. Futura 75 hemp seeds were cold-pressed; the oil was packed into 20 mL vials of four different materials (polypropylene, clear glass, amber glass, and amber glass coated with aluminum foil) and stored for 270 days at 25 °C under diffused light and at 10 °C in dark conditions.

View Article and Find Full Text PDF

This study characterized the quality of hemp oil (HO) and pumpkin seed oil (PO) and their blends before and after 2 and 4 months of storage at refrigerated and room temperature, without access to light and oxygen. The analyses included determining the acid value, peroxide value, fatty acid (FA) composition, and FA distribution in triacylglycerol (TAG) molecules. Pressure differential scanning calorimetry (PDSC) was used to assess the oxidative stability of oils and their blends.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!