The process of creating nanoparticles using chemicals is not eco-friendly. However, a more environmentally conscious approach known as green chemistry, which involves using vegetable-mediated nanoparticle production, combines nanotechnology with biotechnology. In this study, the researchers aimed to assess the effectiveness of the green chemistry technique in producing silver nanoparticles using an liquid extract from broccoli florets () under ideal environment. The successful production of silver nanoparticles was achieved through silver nitrate (AgNO₃) biological reduction with the help of an aqueous broccoli florets extract at a slightly acidic pH of 6-7. The silver nanoparticles occurrence was shown by a change of color that moved from colorless to reddish-brown. To characterize the green-produced nanoparticles, various analytical techniques such as Ultraviolet-Visible Spectroscopy (UV-VIS), Fourier Transform Infrared Spectroscopy (FT-IR), X-ray Diffraction (XRD), Scanning Electron Microscopy (SEM), and Energy-Dispersive X-ray Spectroscopy (EDAX) were employed. The antioxidant properties of the formed silver nanoparticles (AgNPs) were examined in vitro using the 2,2-diphenyl-1-picrylhydrazyl (DPPH) and Ferric Reducing Antioxidant Power (FRAP) tests. Additionally, the antibacterial properties of AgNPs against various pathogenic bacteria was evaluated. The reduction procedure was easy and simple manageable, with UV-Vis spectroscopy indicating the surface plasmon resonance (SPR) presence at 425 nm. FTIR was utilized to identify active chemical groups in the biomass before and after reduction. SEM and X-ray diffraction analyses indicated that the silver nanoparticles had an average the size of individual particles of 33 nm and exhibited a face-centered cubic (FCC) structure. EDAX analysis confirmed the occurrence of elemental silver in the nanoparticles. The study demonstrated that the biosynthesis of AgNPs led to significant variations in antioxidant activity, which was dose-dependent and showed a similar pattern to the testing of the scarfing action of the ascorbic acid against free radicals using DPPH and FRAP. The AgNPs also dispalyed firm deep-spectrum antibacterial action observed against the tested pathogenic bacteria, outperforming certain medications. Interestingly, the silver nanoparticles remained stable at ambient temperature for 25 days without precipitation, retaining their antioxidant and antibacterial properties. In conclusion, the research findings suggest that an aqueous extract of fresh broccoli florets can serve as a viable and environmentally friendly method for producing stable silver nanoparticles with beneficial antioxidant and antibacterial characteristics.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10559003 | PMC |
http://dx.doi.org/10.1016/j.heliyon.2023.e19723 | DOI Listing |
Sci Rep
January 2025
Department of Agricultural Engineering, Kongunadu College of Engineering and Technology, Trichy, Tamil Nadu, India.
This study investigates the enhancement of solar cell efficiency using nanofluid cooling systems, focusing on citrate-stabilized and PVP-stabilized silver nanoparticles. Traditional silicon-based and perovskite solar cells were examined to assess the impact of these nanofluids on efficiency improvement and thermal management. A Central Composite Design (CCD) was employed to vary nanoparticle concentration (0.
View Article and Find Full Text PDFMicrob Cell Fact
January 2025
Microbiology and Immunology Department, Faculty of Medicine, Sohag University, Sohag, Egypt.
Background: The healthcare sector faces a growing threat from the rise of highly resistant microorganisms, particularly Methicillin-resistant Staphylococcus aureus (MRSA) and multidrug-resistant Pseudomonas aeruginosa (MDR P. aeruginosa). Facing the challenge of antibiotic resistance, nanoparticles have surfaced as promising substitutes for antimicrobial therapy.
View Article and Find Full Text PDFInt J Pharm
January 2025
College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, PR China. Electronic address:
Traditional wound care preparations frequently face challenges such as complex care protocols, poor patient compliance, limited skin permeability, lack of aesthetics, and inconvenience, in addition to the risk of bacterial infection. We developed a spray film preparation containing nanocellulose and L-serine modified nanosilver, capable of rapidly forming a transparent film on the skin within minutes of application. The incorporation of nanocellulose imparted protective, moisturizing, and breathable properties to the film, allowing for easy removal after use.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Centro de Investigaciones en Ciencias Microbiológicas, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Av. San Claudio y Av. 24 Sur, Col. San Manuel Ciudad Universitaria, Puebla C.P. 72570, Mexico. Electronic address:
This work presents the effect of Polyhydroxybutyrate nanospheres (PHB-NSs) on the bacterial activity of plasmonic nanoparticles (NPs). The PHB-NSs were used as a substrate for the metal-NPs. Silver and gold NPs in colloidal solution were synthesized by chemical reduction, while PHB-NSs were synthesized by a physical method.
View Article and Find Full Text PDFTalanta
January 2025
MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, China. Electronic address:
The current surface-enhanced Raman scattering (SERS) substrates typically feature a single energy level, posing challenges in coordinating electromagnetic enhancement (EM) and chemical enhancement (CM), thereby limiting the sensitive detection of numerous crucial target molecules. In this study, novel aggregated nanorings (a-NRs) hybridizing Ag, Au and AgCl are constructed as SERS substrates. On one hand, the obtained a-NRs exhibit robust localized surface plasmon resonance absorption, whose wavelength can be tuned to match three commonly used laser wavelengths (532, 633 and 785 nm) to gain strong EM effect.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!