Trihalomethanes and physicochemical quality of drinking water in Addis Ababa, Ethiopia.

Heliyon

Department of Water and Public Health, Ethiopian Institute of Water Resources, Addis Ababa University, P.O. Box: 56402, Addis Ababa, Ethiopia.

Published: September 2023

Background: Trihalomethanes (THMs) are the most dominant fraction of all the byproducts formed during chlorination of water. Disinfection by product (DBP) formation in water is a function of numerous factors, including pH, temperature, residual chlorine, source water characteristics, and organic matter. No study has determined the THM level in the drinking water supply of Addis Ababa, Ethiopia.

Methods: A cross-sectional design was conducted to collect water samples in the water supply distribution networks of Addis Ababa, Ethiopia. Twenty-one (21) sampling stations yielded a total of one hundred twenty (120) samples of drinking water. The sample handling and collection procedures were carried out in accordance with USEPA guidelines. A DB-5 capillary column was used to separate the THMs, which were detected using GC-ECD (gas chromatography-electron capture detector). Spectrophotometric and in situ methods were used for physicochemical parameters. Redundancy analysis (RDA) was used for data analysis of trihalomethanes and environmental variables using CANOCO 4.5.

Results: The mean concentration of total trihalomethanes in drinking water in Addis Ababa was 76.3 μg/L. The concentration of chloroform in the drinking water supply in Addis Ababa, Ethiopia, ranged between 4.03 and 79.4 μg/L. The mean total THMs in the Legedadi and Gefersa water supply systems were 77.4 μg/L and 69.66 μg/L, respectively. The residual chlorine, phosphates, UV absorbance at 254 nm, and combined chlorine had positive correlations with THM formation. However, electron conductivity had a negative correlation with THM formation.

Conclusions: Chloroform contributed the most to TTHMs in nearly all samples. The residual chlorine, UV absorbance, phosphate and hardness as calcium, and electron conductivity were found to be the main predictors determining the abundance and distribution of trihalomethanes. The monitoring and regulation of the THMs is required on a regular basis to analyse trends and guide the water treatment and distribution system.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10558591PMC
http://dx.doi.org/10.1016/j.heliyon.2023.e19446DOI Listing

Publication Analysis

Top Keywords

drinking water
20
addis ababa
20
water supply
16
water
12
ababa ethiopia
12
residual chlorine
12
water addis
8
supply addis
8
electron conductivity
8
trihalomethanes
5

Similar Publications

Background: In developing countries, due to improper management of domestic animals' exposures, under-five (U5) children have been affected by diarrhoea. However, there is no evidence that shows the presence of diarrhoea-causing pathogens in the faeces of U5 children and animals residing in the same houses in the Sidama region, Ethiopia.

Methods: A laboratory-based matched case-control study was conducted on children aged 6-48 months in the Sidama region of Ethiopia from February to June 2023.

View Article and Find Full Text PDF

Impact of adaptation time on lincomycin removal in riverbank filtration: A long-term sand column study.

J Hazard Mater

December 2024

Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China.

Riverbank filtration (RBF) is an effective pretreatment technology for drinking water, removing organic micropollutants (OMPs) mainly through biodegradation. Despite documented improvements in OMP removal with extended adaptation time, the mechanisms remain poorly understood. This study assessed the removal of 128 OMPs over 82 d in a simulated RBF system, identified those with improved removal, and analyzed their properties.

View Article and Find Full Text PDF

Heavy metal contamination of drinking water, primarily driven by industrial activities, represents a critical challenge, with implications for human health and environmental safety. Gujranwala is an industrial and thickly populated city. The current study aimed to assess and compare heavy metal contamination levels in drinking water from five industrial areas and evaluate their potential impacts on human health.

View Article and Find Full Text PDF

Oral intake of degalactosylated whey protein increases peripheral blood telomere length in young and aged mice.

Sci Rep

December 2024

Department of Endocrinology, Metabolism, and Hypertension Research, Clinical Research Institute, NHO Kyoto Medical Center, 1-1 Mukaihata-cho, Fukakusa, Fushimi-ku, Kyoto, 612-8555, Japan.

In order to elucidate novel actions of degalactosylated whey protein (D-WP) in comparison with intact whey protein (WP), the effects of oral intake of D-WP on peripheral blood telomere length and telomerase were examined in young and aged mice. In young mice, peripheral blood telomere length was significantly elongated following oral intake of D-WP for 4 weeks. mRNA expression of both telomerase reverse transcriptase (TERT) and telomerase RNA component (TERC) was significantly increased in the peripheral blood following oral intake of D-WP for 4 weeks.

View Article and Find Full Text PDF

Context: Most major urban areas in the US, including Seattle and King County, have a long-standing lack of public restrooms, handwashing stations, and drinking water, presenting public health risks.

Objective: To aid decision-makers in expanding access, we review available information regarding successful hygiene programs in urban settings to identify shared characteristics and costs.

Design: We reviewed 10 journal articles, 49 news articles, and 54 pieces of gray literature including reports, white papers, and online resources describing real-world hygiene, sanitation, and drinking water programs in US and global urban settings.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!