Abnormal cellular and circuit excitability is believed to drive many core phenotypes in fragile X syndrome (FXS). The dentate gyrus is a brain area performing critical computations essential for learning and memory. However, little is known about dentate circuit defects and their mechanisms in FXS. Understanding dentate circuit dysfunction in FXS has been complicated by the presence of two types of excitatory neurons, the granule cells and mossy cells. Here we report that loss of FMRP markedly decreased excitability of dentate mossy cells, a change opposite to all other known excitability defects in excitatory neurons in FXS. This mossy cell hypo-excitability is caused by increased Kv7 function in KO mice. By reducing the excitatory drive onto local hilar interneurons, hypo-excitability of mossy cells results in increased excitation/inhibition ratio in granule cells and thus paradoxically leads to excessive dentate output. Circuit-wide inhibition of Kv7 channels in KO mice increases inhibitory drive onto granule cells and normalizes the dentate output in response to physiologically relevant theta-gamma coupling stimulation. Our study suggests that circuit-based interventions may provide a promising strategy in this disorder to bypass irreconcilable excitability defects in different cell types and restore their pathophysiological consequences at the circuit level.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10557679PMC
http://dx.doi.org/10.1101/2023.09.27.559792DOI Listing

Publication Analysis

Top Keywords

granule cells
12
mossy cells
12
excessive dentate
8
dentate gyrus
8
dentate circuit
8
excitatory neurons
8
excitability defects
8
dentate output
8
dentate
7
cells
6

Similar Publications

Alterations in Ileal Secretory Cells of The DSS-Induced Colitis Model Mice.

Acta Histochem Cytochem

December 2024

Department of Anatomy, School of Medicine, University of Occupational and Environmental Health, 1-1, Iseigaoka, Yahatanishi, Kitakyushu, Fukuoka 807-8555, Japan.

Inflammatory bowel disease is triggered by abnormalities in epithelial barrier function and immunological responses, although its pathogenesis is poorly understood. The dextran sodium sulphate (DSS)-induced colitis model has been used to examine inflammation in the colon. Damage to mucosa primality occurs in the large intestine and scarcely in the small intestine.

View Article and Find Full Text PDF

Magnetotactic bacteria from diverse Pseudomonadota families biomineralize intracellular Ca-carbonate.

ISME J

January 2025

Université Aix-Marseille, CNRS, CEA, UMR7265 Institut de Biosciences and Biotechnologies d'Aix-Marseille, CEA Cadarache, F-13108 Saint-Paul-lez-Durance, France.

Intracellular calcium carbonate formation has long been associated with a single genus of giant Gammaproteobacteria, Achromatium. However, this biomineralization has recently received increasing attention after being observed in photosynthetic Cyanobacteriota and in two families of magnetotactic bacteria affiliated with the Alphaproteobacteria. In the latter group, bacteria form not only intracellular amorphous calcium carbonates into large inclusions that are refringent under the light microscope, but also intracellular ferrimagnetic crystals into organelles called magnetosomes.

View Article and Find Full Text PDF

Purpose: We demonstrate a novel approach for the definitive treatment of Lisch epithelial corneal dystrophy via an unintentionally staged alcohol keratectomy and intentionally targeted minor limbal excision with cautery.

Methods: A 46-year-old woman presented with visually significant corneal changes, suspected to be Lisch epithelial corneal dystrophy after clinical examination, anterior segment optical coherence tomography, and confocal microscopy. Alcohol keratectomy was performed with complete resolution, but there was visually significant recurrence at 2 years.

View Article and Find Full Text PDF

Background/objectives: Amyloid peptides, whose accumulation in the brain as senile plaques is associated with the onset of Alzheimer's disease, are also found in cerebral vessels and in circulation. In the bloodstream, amyloid peptides promote platelet adhesion, activation, oxidative stress, and thrombosis, contributing to the cardiovascular complications observed in Alzheimer's disease patients. Natural compounds, such as curcumin, are known to modulate platelet activation induced by the hemostatic stimuli thrombin and convulxin.

View Article and Find Full Text PDF

Chronic Oxidative Stress and Stress Granule Formation in UBQLN2 ALS Neurons: Insights into Neuronal Degeneration and Potential Therapeutic Targets.

Int J Mol Sci

December 2024

MOE Key Lab of Rare Pediatric Diseases & Hunan Key Laboratory of Medical Genetics of the School of Life Sciences, Central South University, Changsha 410017, China.

The pathogenesis of neurodegenerative diseases results from the interplay between genetic and environmental factors. Aging and chronic oxidative stress are critical contributors to neurodegeneration. UBQLN2, a ubiquitin-related protein, aids in protein degradation and protects against oxidative stress.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!