Lymphocyte-activation gene-3 (LAG-3), an immune checkpoint receptor, negatively regulates T-cell function and facilitates immune escape of tumors. Dual inhibition of LAG-3 and programmed cell death receptor-1 (PD-1) significantly improved progression-free survival (PFS) in metastatic melanoma patients compared to anti-PD-1 therapy alone. Investigating the utility of LAG-3 expression as a biomarker of response to anti-LAG-3 + anti-PD-1 immunotherapy is of great clinical relevance. This study sought to evaluate the association between baseline LAG-3 expression and clinical outcomes following anti-LAG-3 and anti-PD-1-based immunotherapy in metastatic melanoma. LAG-3 immunohistochemistry (clone D2G4O) was performed on pre-treatment formalin-fixed, paraffin-embedded metastatic melanoma specimens from 53 patients treated with combination anti-LAG-3 + anti-PD-1-based therapies. Eleven patients had received prior anti-PD-1-based treatment. Patients were categorized as responders (complete/partial response; = 36) or non-responders (stable/progressive disease; = 17) based on the Response Evaluation Criteria in Solid Tumours (RECIST). Tumor-infiltrating lymphocytes (TILs) were scored on hematoxylin and eosin-stained sections. LAG-3 expression was observed in 81% of patients, with staining in TILs and dendritic cells. Responders displayed significantly higher proportions of LAG-3+ cells compared to non-responders ( = .0210). LAG-3 expression positively correlated with TIL score ( < .01). There were no significant differences in LAG-3 expression between different sites of metastases ( > .05). Patients with ≥ 1% LAG-3+ cells in their tumors had significantly longer PFS compared to patients with < 1% LAG-3 expression ( = .0037). No significant difference was observed in overall survival between the two groups ( = .1417). Therefore, the assessment of LAG-3 expression via IHC warrants further evaluation to determine its role as a predictive marker of response and survival in metastatic melanoma.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10558007 | PMC |
http://dx.doi.org/10.1080/2162402X.2023.2261248 | DOI Listing |
Clin Rheumatol
January 2025
Jiangsu Institute of Clinical Immunology, the First Affiliated Hospital of Soochow University, Suzhou, 215021, China.
Objectives: The research aimed to assess the proportions of Gamma delta (γδ) T cells and the expression levels of CD226, ICOS, CD40L, OX40, TIGIT, LAG-3, Tim-3, and PD-1 on γδ T cells in the peripheral blood of patients diagnosed with primary Sjögren's syndrome (pSS), and to evaluate the clinical significance of these findings.
Methods: Utilizing flow cytometry, we investigated the proportion of γδ T cells and the expression of CD226, ICOS, CD40L, OX40, TIGIT, LAG-3, PD-1, and Tim-3 on γδ T cells in 37 patients diagnosed with pSS and 28 healthy controls (HC). Moreover, we explored the potential associations between the proportion of γδ T cells, TIGIT + γδ T cells, PD-1 + γδ T cells, and TIGIT + PD-1 + γδ T cells with clinical symptoms and laboratory parameters.
Oncotarget
January 2025
Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
Recently, combination checkpoint therapy of cancer has been recognized as producing additive as opposed to synergistic benefit due in part to positively correlated effects. The potential for uncorrelated or negatively correlated therapies to produce true synergistic benefits has been noted. Whereas the inhibitory receptors PD-1, CTLA-4, TIM-3, LAG-3, and TIGIT have been collectively characterized as exhaustion receptors, another inhibitory receptor KLRG1 was historically characterized as a senescent receptor and received relatively little attention as a potential checkpoint inhibitor target.
View Article and Find Full Text PDFImmunol Med
January 2025
Department of Rheumatology, Institute of Medicine, University of Tsukuba, Ibaraki, Japan.
Immune checkpoint molecules, including both co-inhibitory molecules and co-stimulatory molecules, are known to play critical roles in regulating T-cell responses. During the last decades, immunotherapies targeting these molecules (such as programmed cell death 1 (PD-1), and lymphocyte activation gene 3 (LAG-3)) have provided clinical benefits in many cancers. It is becoming apparent that not only T cells, but also B cells have a capacity to express some checkpoint molecules.
View Article and Find Full Text PDFCancers (Basel)
December 2024
Department of Microbiology, Immunology & Molecular Genetics, David Geffen School of Medicine, Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA 90095, USA.
The treatment of cancers with immunotherapies has yielded significant milestones in recent years. Amongst these immunotherapeutic strategies, the FDA has approved several checkpoint inhibitors (CPIs), primarily Anti-Programmed Death-1 (PD-1) and Programmed Death Ligand-1/2 (PDL-1/2) monoclonal antibodies, in the treatment of various cancers unresponsive to immune therapeutics. Such treatments resulted in significant clinical responses and the prolongation of survival in a subset of patients.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Department of Otorhinolaryngology, Head and Neck Surgery, Saarland University, 66421 Homburg, Germany.
Head and neck squamous cell carcinomas (HNSCC) have an overall poor prognosis, especially in locally advanced and metastatic stages. In most cases, multimodal therapeutic approaches are required and show only limited cure rates with a high risk of tumor recurrence. Anti-PD-1 antibody treatment was recently approved for recurrent and metastatic cases but to date, response rates remain lower than 25%.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!