With over 350,000 cases occurring each year, out-of-hospital cardiac arrest (OHCA) remains a severe public health concern in the United States. The correct and timely use of automated external defibrillators (AEDs) has been widely acknowledged as an effective measure to improve the survival rate of OHCA. While general guidelines have been provided by the American Heart Association (AHA) for AED deployment, the lack of detailed instructions hindered the adoption of such guidelines under dynamic scenarios with various time and space distributions. Formulating the AED deployment as a location optimization problem under budget and resource constraints, we proposed an overlayed spatio-temporal optimization (OSTO) method, which accounted for the spatiotemporal heterogeneity of potential OHCAs. To highlight the effectiveness of the proposed model, we applied the proposed method to Washington DC using user-generated anonymized mobile device location data. The results demonstrated that optimization-based planning provided an improved AED coverage level. We further evaluated the effectiveness of adding additional AEDs by analyzing the cost-coverage increment curve. In general, our framework provides a systematic approach for municipalities to integrate inclusive planning and budget-limited efficiency into their final decision-making. Given the high practicality and adaptability of the framework, the OSTO is highly amenable to different healthcare facilities' deployment tasks with flexible demand and resource restraints.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10557972 | PMC |
http://dx.doi.org/10.3390/ijgi12030091 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!