Parasite diversity can be influenced by the interaction of environmental factors and host traits, but understanding which traits can be decisive for the establishment of the parasite may provide subsidies for a better understanding of the host-parasite relationship. In this study, we investigated whether functional traits, diet, and host phylogeny can predict the similarity of the endoparasite composition of a fish assemblage in a Brazilian floodplain. Of the three evaluated components, the host's diet was the factor that showed the greatest influence on the composition and similarity of endoparasites, demonstrating the highest value of the explanation. The functional traits and phylogeny, despite presenting significant values (unique effect and global effect), showed low explainability in the composition of the endoparasites. When analyzing the joint effects, all components showed significant influence. Hosts that live in the same environment that are phylogenetically related and have a similar ecology have a certain degree of homogeneity in their parasite assemblages and, because they are endoparasites (which are acquired trophically along the chain), diet is the main driver of parasite richness and similarity. Overall, host traits can be one of the main determinants of parasite composition, so studies that address the functional traits of the host provide a representation of local diversity and define the possible patterns of these parasite communities.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/jfb.15576 | DOI Listing |
PLoS One
January 2025
Clinical Research Center, First Affiliated Hospital, Shantou University Medical College, Shantou, China.
Background: University students in Saudi Arabia are embracing some of the negative traits of the fast-paced modern lifestyle, typified by unhealthy eating, low physical activity, and poor sleep habits that may increase their risk for poor health. Health and holistic well-being at the population level are among the priorities of the 2030 vision of a vibrant society in the Kingdom of Saudi Arabia. The current study thus aims at determining the prevalence and predictive factors of Suboptimal Health Status (SHS) among university students.
View Article and Find Full Text PDFPLoS One
January 2025
Instituto de Investigaciones en Ecosistemas y Sustentabilidad, Universidad Nacional Autónoma de México, Morelia, Michoacán, México.
Land use change from wildlands to urban and productive environments can dramatically transform ecosystem structure and processes. Despite their structural and functional differences from wildlands, human-modified environments offer unique habitat elements for wildlife. In this study, we examined how migratory birds use urban, productive, and wildland environments of a highly anthropized region of Western Mexico known as "El Bajío".
View Article and Find Full Text PDFSci Adv
January 2025
Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
Genes on the X chromosome are extensively expressed in the human brain. However, little is known for the X chromosome's impact on the brain anatomy, microstructure, and functional networks. We examined 1045 complex brain imaging traits from 38,529 participants in the UK Biobank.
View Article and Find Full Text PDFSci Adv
January 2025
Forest Entomology, Swiss Federal Research Institute WSL, Birmensdorf, Switzerland.
Understanding how land use affects temporal stability is crucial to preserve biodiversity and ecosystem functions. Yet, the mechanistic links between land-use intensity and stability-driving mechanisms remain unclear, with functional traits likely playing a key role. Using 13 years of data from 300 sites in Germany, we tested whether and how trait-based community features mediate the effect of land-use intensity on acknowledged stability drivers (compensatory dynamics, portfolio effect, and dominant species variability), within and across plant and arthropod communities.
View Article and Find Full Text PDFPLoS One
January 2025
Centre for Neuroscience Studies, Queen's University, Kingston, Ontario, Canada.
Altered neural signaling in fibromyalgia syndrome (FM) was investigated with functional magnetic resonance imaging (fMRI). We employed a novel fMRI network analysis method, Structural and Physiological Modeling (SAPM), which provides more detailed information than previous methods. The study involved brain fMRI data from participants with FM (N = 22) and a control group (HC, N = 18), acquired during a noxious stimulation paradigm.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!