Non-steroidal anti-inflammatory drugs decrease pain and fever while corticosteroids regulate inflammation and immune response, both are prescribed to reduce inflammation and control pain. The present study aimed to study the effects of their monotherapy and co-administration on the brain tissue structure of experimental rats. P-glycoprotein (PGP), a transporter membrane protein, plays an important role in various physiological and physio-pathological conditions, drug-drug and drug-food interactions, and multi-drug resistance. Male rats were divided into four groups and received normal saline, dexamethasone, diclofenac sodium and their dual therapy respectively, then after one-month rats were sacrificed and brain tissues proceeded for hematoxylin and eosin staining to study their histopathology and immunohistochemically staining of NSE, S100-B and GFAP biomarkers were performed. Additionally, in silico molecular docking studies were conducted to elucidate interactions between PGP and used compounds. Resultsshowed that dexamethasone or diclofenac sodium treatments showed abnormalities like edema, neuronal vacuoles, astrocytes hyperplasia and microglial cells with positive reaction to NSE, S100 and GFAP antibodies while the dual therapy displayed less edema and other signs of damage with negative and weak positive staining of NSE, S100 and GFAP antibodies respectively. The molecular docking showed that there were different affinities toward the involved PGP active site. These interaction results were great with Dexamethasone -9.6 kcal/mol forming hydrophobic interactions with the highest affinity when compared with Diclofenac sodium which gave -8.4 kcal/mol. In conclusion, the side effects of the two types of anti-inflammatory drugs may be minimized through their interactions. However, Molecular Dynamic Simulations studies are required to explain the exact dynamic behaviors and protein-ligand stability.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.14715/cmb/2023.69.9.14 | DOI Listing |
Dalton Trans
January 2025
Department of Applied Chemistry, Cochin University of Science and Technology, Kochi 22, Kerala, India.
The rise of various diseases demands the development of new agents with antioxidant, antimicrobial, anti-inflammatory, enzyme-inhibiting, and cytotoxic properties. In this study, heterocyclic Schiff base complexes of Cu(II) featuring a benzo[]thiophene moiety were synthesized and their biological activities evaluated. The complexes were characterized using FT-IR, UV-Vis, and EPR spectroscopy, TG-DTG analysis, magnetic moment measurements, molar conductivity measurements, and elemental analyses.
View Article and Find Full Text PDFJ Immunotoxicol
December 2024
Teikyo University, Tokyo, Japan.
Diclofenac etalhyaluronate, an active pharmaceutical ingredient in JOYCLU (JCL), serves as a joint function improvement agent in knee and hip osteoarthritis patients. However, frequent cases of anaphylaxis induced by JCL administration have been reported. Recent clinical research suggests the potential utility of the basophil activation test (BAT) in predicting JCL-induced anaphylaxis.
View Article and Find Full Text PDFMar Pollut Bull
January 2025
Institute of Oceanology of the Polish Academy of Sciences, Powstańców Warszawy 55, 81-712 Sopot, Poland. Electronic address:
This study examines pharmaceutical residues in the seawater of west Spitsbergen fjords, using indicator compounds that represent different types of medications with various therapeutic uses (sulfamethoxazole, trimethoprim, carbamazepine, diclofenac, and caffeine). Over three years (summer 2018-2021), trimethoprim, carbamazepine, diclofenac, and caffeine were detected in the investigated fjords (Hornsund, Adventfjorden, Grønnfjorden, Isfjorden, and Kongsfjorden), with diclofenac and caffeine being the most common. Sulfamethoxazole was below the limit of detection in all samples.
View Article and Find Full Text PDFSci Total Environ
January 2025
Centre for Agroecology Water and Resilience (CAWR), Coventry University, Wolston Lane, Ryton on Dunsmore, CV8 3LG, UK. Electronic address:
The widespread occurrence of new and emerging and persistent organic pollutants (NEPs and POPs) in surface water poses a risk to drinking water supply and consequently human health. The aim of this work was to investigate the occurrence and potential transport of 42 target NEPs and POPs (including per-and polyfluoroalkyl substances (PFAS), pharmaceuticals, pesticides and bisphenols) along the rural and urban environments of three rivers in England. The type and concentrations of pollutants varied between the sampling days and points.
View Article and Find Full Text PDFJ Chem Phys
January 2025
Departamento de Física, Instituto de Física e Matemática, Universidade Federal de Pelotas, Caixa Postal 354, Pelotas, Brazil.
Water is a fundamental component of life, playing a critical role in regulating metabolic processes and facilitating the dissolution and transport of essential molecules. However, emerging contaminants, such as pharmaceuticals, pose significant challenges to water quality and safety. Nanomaterial-based technologies emerge as a promising solution for removing those contaminants from water.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!