MiR-669b-5p inhibits the Alzheimer's disease development via regulation of CHEK2 in Neuro2a APPSwe/Δ9 cells.

Cell Mol Biol (Noisy-le-grand)

Department of General Medicine, Heilongjiang Academy of Traditional Chinese Medicine, No. 33 of West Dazhi Street, Harbin, Heilongjiang 150001, P.R. China.

Published: September 2023

DNA damage of neurons is accumulated in Alzheimer's disease (AD). DNA damage-activated Checkpoint kinase 2 (CHEK2) is evaluated in Aβ-treated Neuro2a APPSwe/Δ9 cells, and the miR-669b-5p was specifically down-regulated. However, the underlying molecular mechanism between CHEK2 and miR-669b-5p in Neuro2a APPSwe/Δ9 cells remains unclear. This research discovers that in A-treated Neuro2a APPSwe/Δ9 cells, CHEK2 expression and miR-669b-5p expression were inversely correlated. In addition, miR-669b-5p mimics increased cell survival and proliferation in Neuro2a APPSwe/Δ9 cells while decreasing the production of inflammatory cytokines and cell death. Furthermore, it is observed that CHEK2 was a miR-669b-5p downstream target gene and that CHEK2 restored the miR-669b-5p's functions. According to this research, miR-669b-5p is a potential therapy for Alzheimer's patients since it slows the advancement of the disease.

Download full-text PDF

Source
http://dx.doi.org/10.14715/cmb/2023.69.9.17DOI Listing

Publication Analysis

Top Keywords

neuro2a appswe/Δ9
20
appswe/Δ9 cells
20
alzheimer's disease
8
chek2 mir-669b-5p
8
mir-669b-5p
7
chek2
6
neuro2a
5
appswe/Δ9
5
cells
5
mir-669b-5p inhibits
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!