Low-Temperature Upcycling of Polypropylene Waste into H Fuel via a Novel Tandem Hydrothermal Process.

ChemSusChem

State Key Laboratory of Clean Energy Utilization, Zhejiang University, Zheda Road 38, Hangzhou, 310027, China.

Published: February 2024

Plastic waste is a promising and abundant resource for H production. However, upcycling plastic waste into H fuel via conventional thermochemical routes requires relatively considerable energy input and severe reaction conditions, particularly for polyolefin waste. Here, we report a tandem strategy for the selective upcycling of polypropylene (PP) waste into H fuel in a mild and clean manner. PP waste was first oxidized into small-molecule organic acids using pure O as oxidant at 190 °C, followed by the catalytic reforming of oxidation aqueous products over ZnO-modified Ru/NiAl O catalysts to produce H at 300 °C. A high H yield of 44.5 mol/kg and a H mole fraction of 60.5 % were obtained from this tandem process. The entire process operated with almost no solid residue remaining and equipment contamination, ensuring relative stability and cleanliness of the reaction system. This strategy provides a new route for low-temperature transforming PP and improving the sustainability of plastic waste disposal processes.

Download full-text PDF

Source
http://dx.doi.org/10.1002/cssc.202301299DOI Listing

Publication Analysis

Top Keywords

waste fuel
12
plastic waste
12
upcycling polypropylene
8
polypropylene waste
8
waste
7
low-temperature upcycling
4
fuel novel
4
novel tandem
4
tandem hydrothermal
4
hydrothermal process
4

Similar Publications

Systematic characterization of faecal sludge from various sources for its use as a solid fuel.

Biomass Convers Biorefin

September 2023

Department of Water Supply, Sanitation and Environmental Engineering, IHE Delft Institute for Water Education, Westvest 7, 2611 AX Delft, the Netherlands.

Faecal sludge (FS) is not extensively evaluated for its potential as a solid fuel mainly due to the general conception of its "highly variable characteristics" in relation to the wide range of on-site sanitation systems. An extensive and systematic FS characterization was therefore conducted on twenty-four samples collected directly from pit latrines, ventilated improved pit latrines (VIPs) and urine-diverting dehydrating toilets (UDDTs) at two depths to understand the impact on properties relevant for combustion. The higher heating value (HHV) for these samples lies between 13 to 22 MJ/kg DM (dry matter).

View Article and Find Full Text PDF

Solid-state fermentation of lignocellulosic waste to produce feed protein is a means of realising solid waste. However, low efficiency and susceptibility to microbial contamination remain significant challenges in feed protein production through room-temperature solid-state fermentation. In this study, thermophilic microbiomes were enriched.

View Article and Find Full Text PDF

Polychlorinated naphthalenes (PCNs) and polychlorinated biphenyls (PCBs) in surface soils and street dusts in Detroit, Michigan.

Sci Total Environ

January 2025

Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI, 48109, United States. Electronic address:

Polychlorinated naphthalenes (PCNs) and polychlorinated biphenyls (PCBs) are toxic contaminants that were produced and used in large quantities for their stability, inertness, and other desirable electrical, cooling, and lubricating properties. Due to their environmental persistence and improper disposal, these contaminants have become broadly distributed in the environment. This study examines the levels, composition, distribution, and potential sources of these compounds in surface soils and street dusts collected at 19 residential and industrial areas in Detroit, Michigan.

View Article and Find Full Text PDF

Functionalized 2D multilayered MXene for selective and continuous recovery of rare earth elements from real wastewater matrix.

J Hazard Mater

January 2025

Centre for Water Technology (WATEC) & Department of Biological and Chemical Engineering, Aarhus University, Ole Worms Allé 3, Aarhus 8000, Denmark. Electronic address:

Rare earth elements (REEs) are the "fuel" for high-tech industry, yet their selective recovery from complex waste matrices is challenging. Herein, we designed a 2D multilayered MXene TiCT adsorbent for selective extraction of REEs in a broad pH range. By establishing strong Lewis acid-base interactions, extraction capacities of TiCT to Eu(III) and Ho(III) reached 892.

View Article and Find Full Text PDF

Purpose: Biodiesel is a non-toxic, renewable, and environmentally friendly fuel used in compression ignition engines. This work aimed to develop FeO/SiO as a cheap, magnetic, and easy separable catalyst for biodiesel production from waste oil by sono-catalytic transesterification.

Methods: Fe₃O₄-SiO₂ was prepared using a modified Stober method and used as a heterogeneous catalyst in an ultrasound-assisted transesterification reaction to produce biodiesel.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!