γ-valerolactone (GVL) is a key value-added chemical catalytically produced from levulinic acid (LA), an important biomass derivative platform chemical. Here an ultra-efficient 3D Ru catalyst generated by in situ reduction of RuZnO nanoboxes is reported; the catalyst features a well-defined structure of highly dispersed in situ oxide-derived Ru (IOD-Ru) clusters (≈1 nm in size) spatially confined within the 3D nanocages with rich mesopores, which guarantees a maximized atom utilization with a high exposure of Ru active sites as well as a 3D accessibility for substrate molecules. The IOD-Ru exhibits ultrahigh performance for the hydrogenation of LA into GVL with a record-breaking turnover frequency (TOF) up to 59400 h , 14 times higher than that of the ex situ reduction of RuZnO nanoboxes catalyst. Structural characterizations and theoretical calculations collectively indicate that the defect-rich and coordination-unsaturated IOD-Ru sites can boost the activation of the carbonyl group in LA with a significantly lowered energy barrier of hydrogenation.

Download full-text PDF

Source
http://dx.doi.org/10.1002/smll.202306227DOI Listing

Publication Analysis

Top Keywords

levulinic acid
8
situ reduction
8
reduction ruzno
8
ruzno nanoboxes
8
oxide-derived catalyst
4
catalyst ultra-efficient
4
ultra-efficient hydrogenation
4
hydrogenation levulinic
4
acid γ-valerolactone
4
γ-valerolactone γ-valerolactone
4

Similar Publications

Zeolites with different structures (P1, sodalite, and X) were synthesized from coal fly ash by applying ultrasonically assisted hydrothermal and fusion-hydrothermal synthesis. Bimetallic catalysts, containing 5 wt.% Ni and 2.

View Article and Find Full Text PDF

Levulinic acid (LA) is a key platform molecule with current applications in the synthesis of several commodity chemicals, including amino-levulinic acid, succinic acid, and valerolactone. In contrast to existing petroleum-based synthesis pathway, biomass-derived --muconic acid (MA) offers a sustainable route to synthesize LA. Here, we show the complete decarboxylation of neat MA to LA without solvent at atmospheric pressure and mild temperature.

View Article and Find Full Text PDF

In recent years, biorefining Municipal Solid Waste (MSW) has gained attention as a promising solution to the challenges of waste management and resource shortages, while also advancing sustainability goals. This research focuses on the European Union, analyzing the material flow and sustainability of biorefining systems and evaluating their impact on society, the economy, and the natural environment. The final products of the integrated material recovery processes, including recycling (18.

View Article and Find Full Text PDF

The complex structure of lignocellulose necessitates advanced pretreatment techniques to effectively separate its three primary components for further conversion into valuable products. This study introduced an innovative approach to pretreating bagasse by commencing with ultra-high-pressure homogenization (UHPH) applied to raw bagasse, which maintained chemical integrity while reducing intermolecular bonds, crystallinity, and particle size. Subsequently, UHPH-bagasse underwent pretreatment using a synergistic solution of ionic liquid ([Bmim]Cl) and organic acid (oxalic acid: OA).

View Article and Find Full Text PDF

Towards a circular biorefinery system for efficient biobased furfural and levulinic acid production based on techno-economic analysis.

Bioresour Technol

November 2024

School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China; National Key Laboratory of Biobased Transport Fuel Technology, Zhengzhou 450001, China. Electronic address:

Furfural (FUR) and levulinic acid (LA) are promising biobased platform chemicals that can be converted into value-added chemicals. An integrated biorefinery process is applied to FUR and LA production from corncob for efficient feedstock and energy utilization. Here, a techno-economic analysis of the integrated process of FUR and LA production was performed.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!