Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Because of its long survival time, high migration ability and high pathogenicity, the migration of the virus in the subsurface environment deserves in-depth exploration and research. In this study we investigated the migration behavior of E. coli phage (VI) with organic colloids (HA) or inorganic colloids (SiO) in the saturated or unsaturated bands and compared the differences in their migration mechanisms.The effects of different colloids on the surface characteristics of VI were analyzed according to particle size and zeta potential. Column experiments were conducted to simulate their migration in the subsurface environment. The results show that HA enhances the stability of VI-HA, promotes VI migration and plays a dominant role in its migration process under both saturated and unsaturated conditions. In contrast, SiO puts VI-SiO in an unstable state and is easily separated in the unsaturated state, thus promoting VI migration. Based on migration experiments, the extent of influence factors on VI migration was quantified and compared. The effect of colloids on VI migration is greater than that of moisture content, where the effect of HA is greater than that of SiO. This study provides an experimental research idea to determine the dominant factors affecting virus migration, and provides a general direction and theoretical basis for the biological risk assessment of pathogenic microorganisms in complex underground environments, in order to enable the decision makers to make a response in time, accurately, and efficiently.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2023.167635 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!