A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Comammox Nitrospira dominates the nitrification in artificial coniferous forest soils of the Qilian Mountains. | LitMetric

Comammox Nitrospira dominates the nitrification in artificial coniferous forest soils of the Qilian Mountains.

Sci Total Environ

Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu 730000, China. Electronic address:

Published: January 2024

Complete ammonia oxidizers (Comammox, CMX) are a newly discovered and important component of the nitrogen cycle. While CMX Nitrospira has been detected in various ecosystems, few studies so far have focused on the relative contribution and co-occurrence network of ammonia oxidizing archaea (AOA), bacteria (AOB), and CMX Nitrospira in artificial forest ecosystems (tree plantations). We evaluated the dynamics of composition, co-occurrence patterns and contribution of soil microbial nitrifiers to nitrification in soil of various tree species with different ages in the Qilian Mountains employing the space for time substitution approach, quantitative PCR and high-throughput sequencing technology. Generally, plantation development significantly reduced soil potential nitrification rates. Inhibition experiments and modular analysis showed that AOA played leading roles in nitrification of abandoned farmland and 17-year-old Hippophae rhamnoides, whereas CMX Nitrospira dominated in 36-year-old Picea crassifolia, 36-year-old Picea crassifolia and Larix gmelinii mixed plantation, and 50-year-old Picea crassifolia. The dominant AOA and CMX Nitrospira lineages in all samples were Group I.1b and Clade B, respectively. The assembly of nitrifier community was governed by stochastic processes, in which dispersal limitation made a significant contribution. The nitrifiers coexist in a mutualistic manner, albeit with possible functional redundancy, while the modular analysis revealed the aggregation pattern of the four modules in different artificial forests' soil. The Mantel test showed that modular formation is mainly affected by NH and SOM. These results broaden our current understanding of the relation between CMX Nitrospira and canonical ammonia oxidizers in terrestrial ecosystems, and provide empirical evidence for not only niche differentiation, but also the relative contribution and co-occurrence patterns of nitrifying communities in an artificial forest ecosystem.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2023.167653DOI Listing

Publication Analysis

Top Keywords

cmx nitrospira
20
picea crassifolia
12
qilian mountains
8
ammonia oxidizers
8
relative contribution
8
contribution co-occurrence
8
artificial forest
8
co-occurrence patterns
8
modular analysis
8
36-year-old picea
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!