Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
In this study, we demonstrated the effective acquisition of magnetic iron oxide (MIO) for As(V) adsorption by high-temperature pyrolysis of waste iron sludge from the water treatment plant under a confined environment without adding extra chemical reagents. The operating temperature and time in the pyrolysis process were optimized to improve the yield of MIO and its As(V) adsorption capacity. MIO(500 °C, 2 h) had both relatively high yield and arsenic adsorption efficiency, which was characterized by XRD and XPS as mainly γ-FeO with small particle size (100-900 nm), significant mesopore (12.43 nm), high specific surface area (65.25 m/g), and effective saturation magnetization intensity (14.45 emu/g). The maximum adsorption capacity was 14.2 ± 0.4 mg/g, and the removal rate could still reach about 80 % after five times of adsorbent regeneration. Considering this facile preparation route and its high yield, large-scale production of MIO from waste iron sludge is feasible, which is expected to provide a low-cost and efficient adsorbent for the treatment of arsenic-containing water in less economically developed areas.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2023.167575 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!