AI Article Synopsis

  • Probiotic yeasts have become popular in aquaculture due to their health benefits for farmed fish, with a focus on autochthonous yeasts identified from goldfish.
  • Four specific yeast strains were characterized from the intestinal tracts of healthy goldfish, and their probiotic properties were tested for things like cell surface hydrophobicity and ability to tolerate pH and bile salts.
  • Results showed that these strains can co-aggregate with harmful bacteria and tolerate low pH, highlighting their potential as probiotic candidates, but further testing in real-life aquaculture settings is needed.

Article Abstract

In aquaculture, probiotic yeasts have gained particular interest because of their numerous health benefits for farmed fish. Many autochthonous yeasts have been isolated and identified from fish species with potential probiotic characteristics. In the present study, four autochthonous yeast strains were identified and characterized from the intestinal tracts of 16 healthy goldfish, Carassius auratus. Their in vitro probiotic properties were examined in terms of cell surface hydrophobicity, co-aggregation, and tolerability to different pH values and bile salt concentrations. These strains were identified by culture characters and sequence analysis of ITS (Internal Transcribed Spacer) gene regions. Four strains, namely Cutaneotrichosporon jirovecii isolate jpn01, Debaryomyces nepalensis isolate jpn02, Blastobotrys proliferans isolate jpn05, and Diutina catenulata isolate jpn06, were identified and added to the NCBI GenBank with accession numbers defined as MT584874.1, MT584873.1, MT649918.1, and MT501155.1, respectively. Results demonstrated the capability of these strains to co-aggregate with several fish-associated bacterial pathogens such as Lactococcus garvieae, Vagococcus salmoninarum, Vibrio anguillarum, Yersinia ruckeri, and Aeromonas hydrophila. Only the jpn05 strain did not co-aggregate with A. hydrophila. All identified yeast isolates could grow and tolerate low pH conditions (pH 2.0) and bile salt concentrations (up to 1.5%). Of interest, the hydrophobicity (%) of the yeast isolates was 80%, 94.0%, 80.6%, and 66.4% for jpn01, jpn02, jpn05, and jpn06 isolates, respectively. In this context, our data provide important in vitro evidence for the potential probiotic features of the yeast isolates. These strains could be considered candidate probiotic yeasts; however, their application in aquaculture nutrition necessitates further in vivo assays.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.micpath.2023.106381DOI Listing

Publication Analysis

Top Keywords

potential probiotic
12
yeast isolates
12
autochthonous yeasts
8
goldfish carassius
8
carassius auratus
8
probiotic properties
8
bacterial pathogens
8
probiotic yeasts
8
strains identified
8
bile salt
8

Similar Publications

Digging deeper into necrotizing enterocolitis: bridging clinical, microbial, and molecular perspectives.

Gut Microbes

December 2025

Department of Pediatrics, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Ministry of Education), West China Second University Hospital, Sichuan University, Chengdu, China.

Necrotizing Enterocolitis (NEC) is a severe, life-threatening inflammatory condition of the gastrointestinal tract, especially affecting preterm infants. This review consolidates evidence from various biomedical disciplines to elucidate the complex pathogenesis of NEC, integrating insights from clinical, microbial, and molecular perspectives. It emphasizes the modulation of NEC-associated inflammatory pathways by probiotics and novel biologics, highlighting their therapeutic potential.

View Article and Find Full Text PDF

Modulation of Intestinal Inflammation and Protection of Dopaminergic Neurons in Parkinson's Disease Mice through a Probiotic Formulation Targeting NLRP3 Inflammasome.

J Neuroimmune Pharmacol

January 2025

Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, PR China.

Emerging evidence highlights the significance of peripheral inflammation in the pathogenesis of Parkinson's disease (PD) and suggests the gut as a viable therapeutic target. This study aimed to explore the neuroprotective effects of the probiotic formulation VSL#3 and its underlying mechanism in a PD mouse model induced by MPTP. Following MPTP administration, the striatal levels of dopamine and its metabolites, as along with the survival rate of dopaminergic neurons in the substantia nigra, were significantly reduced in PD mice.

View Article and Find Full Text PDF

Comparative Analysis of the Probiotic Features of Lysinibacillus and Enterobacter Strains Isolated from Gut Tract of Triploid Cyprinid Fish.

Curr Microbiol

January 2025

State Key Laboratory of Developmental Biology of Freshwater Fish, Engineering Research Center of Polyploidy Fish Reproduction and Breeding of the State Education Ministry, College of Life Science, Hunan Normal University, Changsha, 410081, People's Republic of China.

Gut mucosal immunity of teleost is mainly governed by mucosa-associated lymphoid tissues (MALT) and indigenous microbiota on mucosal surfaces of gut tract, which can confer protection against pathogenic invasion. However, the probiotic features of bacterial isolates from gut tract of triploid cyprinid fish (TCF) were largely unclear. In this study, Lysinibacillus and Enterobacter strains were isolated for probiotic identification.

View Article and Find Full Text PDF

Aims: To investigate the effects of Lactococcus lactis subsp. lactis strains LL100933 and LL12007 on the host defense mechanisms of Caenorhabditis elegans against pathogenic infections and stressors.

Methods And Results: C.

View Article and Find Full Text PDF

Purpose: To study the potential of a candidate probiotic strain belonging to the Enterococcus durans species in alleviating hypercholesterolemia and improving the microbial milieu of rat gut.

Methods: A previously isolated and characterized E. durans strain NPL 1334 was further screened in vitro for its bile salt hydrolyzation and cholesterol assimilation ability.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!