Marine pollution and bacterial disease outbreaks are two closely related dilemmas that impact marine fish production from fisheries and mariculture. Oil, heavy metals, agrochemicals, sewage, medical wastes, plastics, algal blooms, atmospheric pollutants, mariculture-related pollutants, as well as thermal and noise pollution are the most threatening marine pollutants. The release of these pollutants into the marine aquatic environment leads to significant ecological degradation and a range of non-infectious disorders in fish. Marine pollutants trigger numerous fish bacterial diseases by increasing microbial multiplication in the aquatic environment and suppressing fish immune defense mechanisms. The greater part of these microorganisms is naturally occurring in the aquatic environment. Most disease outbreaks are caused by opportunistic bacterial agents that attack stressed fish. Some infections are more serious and occur in the absence of environmental stressors. Gram-negative bacteria are the most frequent causes of these epizootics, while gram-positive bacterial agents rank second on the critical pathogens list. Vibrio spp., Photobacterium damselae subsp. Piscicida, Tenacibaculum maritimum, Edwardsiella spp., Streptococcus spp., Renibacterium salmoninarum, Pseudomonas spp., Aeromonas spp., and Mycobacterium spp. Are the most dangerous pathogens that attack fish in polluted marine aquatic environments. Effective management strategies and stringent regulations are required to prevent or mitigate the impacts of marine pollutants on aquatic animal health. This review will increase stakeholder awareness about marine pollutants and their impacts on aquatic animal health. It will support competent authorities in developing effective management strategies to mitigate marine pollution, promote the sustainability of commercial marine fisheries, and protect aquatic animal health.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.chemosphere.2023.140366 | DOI Listing |
ISME Commun
January 2025
Key Laboratory of Water and Sediment Sciences, Ministry of Education, Department of Environmental Engineering, Peking University, Beijing 100871, China.
Rivers serve important functions for human society and are significantly impacted by anthropogenic nutrient inputs (e.g. organic and sulfur compounds).
View Article and Find Full Text PDFF1000Res
January 2025
Doctorado en Medicina Tropical, Faculty of Medicine, Universidad de Cartagena, Cartagena, Bolívar, Colombia.
Background: Contamination of Cartagena Bay, Colombia with heavy metals such as mercury (Hg) and cadmium (Cd) presents a major environmental and public health concern, particularly for human communities residing on nearby islands and coastal areas. These populations face enhanced exposure risks owing to their traditional fishing practices and continuous interactions with polluted marine environments. This study aimed to evaluate the genotoxic effects of environmental exposure to Hg and Cd in populations from the island zone of the Cartagena district, Bolívar.
View Article and Find Full Text PDFSci Rep
January 2025
Faculty of Marine Engineering, Gdynia Maritime University, Morska 81-87, 81-225, Gdynia, Poland.
This paper presents the effect of environmentally friendly additives on selected parameters and microbial degradation of Marine Diesel Oil (MDO). Microbiological contamination is a serious problem in MDO and other petroleum products. For this reason, it was decided to investigate the effects of environmentally friendly additives such as silver solution and colloidal nanosilver, as well as effective liquid microorganisms and ceramic tubes with different percentages of them in diesel oil (MDO) on its selected parameters and inhibition of bacterial and fungal growth.
View Article and Find Full Text PDFNatl Sci Rev
February 2025
Key Laboratory of Water and Sediment Sciences, Ministry of Education, Department of Environmental Engineering, Peking University, Beijing 100871, China.
The riverine NO fluxes are assumed to linearly increase with nitrate loading. However, this linear relationship with a uniform EF is poorly constrained, which impedes the NO estimation and mitigation. Our meta-analysis discovered a universal NO emission baseline (EF = k/[NO ], k = 0.
View Article and Find Full Text PDFEnviron Pollut
January 2025
Laboratory of Marine Protozoan Biodiversity and Evolution,Marine College, Shandong University,Weihai,China. Electronic address:
Cadmium (Cd) pollution is a widespread threat to aquatic life, and ongoing freshwater acidification (FA) can be expected to interact with Cd compounds to disrupt freshwater ecosystems. However, the effects of FA on Cd biotoxicity remain unclear. Herein, the model ciliate Paramecium tetraurelia, a model unicellular eukaryotic organism, was used to explore the response to environmental relevant concentrations of Cd under acidification conditions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!