Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Quantification of polycyclic aromatic hydrocarbons (PAHs) in contaminated soil and identification of potential PAH degraders are essential for comprehending their environmental fate and conducting bioremediation. However, the microbial population responsible for the breakdown of phenanthrene (PHE) in polluted soil environments is frequently disregarded. In this study, via DNA-stable-isotope probing (DNA-SIP), we found that soil microbiota likely plays a crucial part in the PHE degradation. The PHE removal rates were 98% and 99%, in C-PHE and C-PHE microcosmic incubations, respectively. CO was produced along with the degradation of C-PHE. According to the analysis of 16S rRNA gene, there was a relatively higher presence of unidentified bacteria in the 'heavy' DNA fractions treated with C-PHE. Genus of Enterobacteriales, Acidobacteria, Alphaproteobacteria, Paenibacillaceae, Flavobacteriia, Chloroflexi, Cyanobacteria, Caldilineae, Latescibacteria, Armatimonadetes and Blastocatellia were succseesfully labeled during the degradation of C-PHE, indicating their capacity of utilizing PHE. Co-occurrence network of C-heavy fractions exhibited greater complexity compared with that of C-heavy fractions, revealling an enhancement of bacterial interspecies interactions. Collectivley, this study eluidated the soil microbes involed in the PHE degradation and offered fresh perspectives on the community pattern of potential PHE degrading bacteria.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.chemosphere.2023.140377 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!