Occurrence and fate of antibiotic-resistance genes and their potential hosts in high-moisture alfalfa silage treated with or without formic acid bactericide.

J Environ Manage

School of Life Sciences, Probiotics and Biological Feed Research Center, Lanzhou University, Lanzhou, 730000, PR China; State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730000, PR China. Electronic address:

Published: December 2023

Silage as the main forage for ruminants could be a reservoir for antibiotic resistance genes (ARGs) through which these genes got access into the animals' system causing a latent health risk. This study employed metagenomics and investigated the ARGs' fate and transmission mechanism in high-moisture alfalfa silage treated with formic acid bactericide. The results showed that there were 22 ARGs types, in which multidrug, macrolide-lincosamide-streptogramine, bacitracin, beta-lactam, fosmidomycin, kasugamycin, and polymycin resistance genes were the most prevalent ARGs types in the ensiled alfalfa. The natural ensiling process increased ARGs enrichment. Intriguingly, after 5 days of ensiling, formic acid-treated silage reduced ARGs abundances by inhibiting host bacterial and plasmids. Although formic acid bactericide enhanced the fermentation characteristics of the high-moisture alfalfa by lowering silage pH, butyric acid concentration, dry matter losses and proteolysis, it increased ARGs abundances in alfalfa silage owing to increases in abundances of ARGs carriers and transposase after 90 days of ensiling. Notably, several pathogens like Staphylococcus, Clostridium, and Pseudomonas were inferred as potential ARGs hosts in high-moisture alfalfa silage, and high-moisture alfalfa silage may harbor a portion of the clinical ARGs. Fundamentally, microbes were distinguished as the foremost driving factor of ARGs propagation in ensiling microecosystem. In conclusion, although formic acid bactericide improved the fermentation characteristics of high-moisture alfalfa during ensiling and reduced ARGs enrichment at the initial ensiling stage, it increased ARGs enrichment at the end of ensiling.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jenvman.2023.119235DOI Listing

Publication Analysis

Top Keywords

high-moisture alfalfa
24
alfalfa silage
20
formic acid
16
acid bactericide
16
args
12
increased args
12
args enrichment
12
hosts high-moisture
8
alfalfa
8
silage
8

Similar Publications

Changes in microbial dynamics and fermentation characteristics of alfalfa silage: A potent approach to mitigate greenhouse gas emission through high-quality forage silage.

Chemosphere

August 2024

Department of Civil & Energy System Engineering, Kyonggi University, Suwon, Gyeonggi-Do, 16227, South Korea; Department of Medical Biotechnology and Integrative Physiology, Institute of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Thandalam, Chennai, 602105, Tamil Nadu, India. Electronic address:

Feeding ruminants with high-quality forage can enhance digestibility and reduce methane production. Development of high-quality silage from leguminous plants with lactic acid bacteria can improve digestibility and it mitigate the greenhouse gas emissions. In this study, we developed a high-quality alfalfa silage with improved fermentation index and microbial dynamics using Levilactobacillus brevis-KCC-44 at low or high moisture (LM/HM) conditions and preserved it for 75 or 150 days.

View Article and Find Full Text PDF

Occurrence and fate of antibiotic-resistance genes and their potential hosts in high-moisture alfalfa silage treated with or without formic acid bactericide.

J Environ Manage

December 2023

School of Life Sciences, Probiotics and Biological Feed Research Center, Lanzhou University, Lanzhou, 730000, PR China; State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730000, PR China. Electronic address:

Silage as the main forage for ruminants could be a reservoir for antibiotic resistance genes (ARGs) through which these genes got access into the animals' system causing a latent health risk. This study employed metagenomics and investigated the ARGs' fate and transmission mechanism in high-moisture alfalfa silage treated with formic acid bactericide. The results showed that there were 22 ARGs types, in which multidrug, macrolide-lincosamide-streptogramine, bacitracin, beta-lactam, fosmidomycin, kasugamycin, and polymycin resistance genes were the most prevalent ARGs types in the ensiled alfalfa.

View Article and Find Full Text PDF

Comparison of alternative neutral detergent fiber methods to the AOAC definitive method.

J Dairy Sci

August 2023

Mertens Innovation & Research LLC, Belleville, WI 53508.

Neutral detergent fiber (NDF) is the most commonly reported metric for fiber in dairy cattle nutrition. An empirical method, NDF is defined by the procedure used to measure it. The current definitive method for NDF treated with amylase (aNDF) is AOAC Official Method 2002.

View Article and Find Full Text PDF

Corn silage is the predominant mechanically harvested forage source for feedlot cattle production in the United States because of high yield. Alternatively, because of multiple cuttings per year and lower annual cost, the use of alfalfa or other forages, may increase opportunities for manure spreading, perennial soil cover, pollinator habitat, and greater carbon sequestration. The objective of this trial was to determine the feeding value of alfalfa haylage when replacing corn silage in growing cattle diets.

View Article and Find Full Text PDF

For baled silages, production of clostridial fermentation products can be exacerbated by exceeding normal moisture targets (45% to 55%), and/or by the application of dairy slurry before harvest. Our objectives were to test a microbial inoculant as a mitigant of clostridial products in high-moisture, grass-legume (52% ± 13.8% cool-season grasses, 44.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!