Recent progress on sonochemical production for the synthesis of efficient photocatalysts and the impact of reactor design.

Ultrason Sonochem

Department of Industrial Chemistry "Toso Montanari", University of Bologna, viale Risorgimento 4 40136 Bologna, Italy; Center for Chemical Catalysis - C3, University of Bologna, viale Risorgimento 4 40136 Bologna, Italy. Electronic address:

Published: November 2023

Sonochemical-assisted synthesis has flourished recently for the design of photocatalysts. The main power used is ultrasound that allows the nanomaterials shape and size modification and control. This review highlights the effect in formation mechanism by ultrasound application and the most common photocatalysts that were prepared via sonochemical techniques. Moreover, the challenge for the suitable reactor design for the synthesis of materials or for their photocatalytic evaluation is discussed since the most prominent reactor systems, batch, and continuous flow, has both advantages and drawbacks. This work summarises the significance of sonochemical synthesis for photocatalytic materials as a green technology that needs to be further investigated for the preparation of new materials and the scale up of developed reactor systems to meet industrial needs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10568290PMC
http://dx.doi.org/10.1016/j.ultsonch.2023.106610DOI Listing

Publication Analysis

Top Keywords

reactor design
8
reactor systems
8
progress sonochemical
4
sonochemical production
4
synthesis
4
production synthesis
4
synthesis efficient
4
efficient photocatalysts
4
photocatalysts impact
4
reactor
4

Similar Publications

This paper is a comprehensive reference for researchers interested in flexible AC alternating current transmission systems (FACTS) technologies. This study investigates modified UPFC models. Besides UPFC, an overview of DPFC will be presented, and the critical differences between these advanced power flow control technologies will be discussed.

View Article and Find Full Text PDF

Boosting peroxymonosulfate activation for complete removal of gatifloxacin by a bead-chain zeolitic imidazolate framework composite.

J Colloid Interface Sci

January 2025

College of Chemistry and Chemical Engineering, Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, China West Normal University, Nanchong 637000, PR China. Electronic address:

A bead-chain metal-organic framework composite was designed and synthesized by assembling a zeolitic imidazolate framework (ZIF) onto manganese dioxide (MnO) nanowires. The prepared catalyst MnO@ZIF-X (X = 1, 2 and 3) was used to facilitate gatifloxacin (GAT) degradation by using potassium peroxymonopulfate (PMS) as an activator. MnO@ZIF-2 exhibited excellent catalytic performance, achieving 100 % degradation of GAT (10 mg/L) in the presence of PMS (1 mM) in 15 min, and the toxicity of the majority of degradation intermediates decreased.

View Article and Find Full Text PDF

Mesh-Collision Microtube Plasma Ion Source for Direct Mass Spectrometry Analysis.

Anal Chem

January 2025

Chinese Academy of Inspection and Quarantine, Beijing 100176, China.

Developing ambient ionization methods for direct mass spectrometry (MS) analysis is crucial for achieving sample-to-answer capabilities, especially for rapid analysis and monitoring in specific scenarios. Herein, a compact device is presented that utilizes mesh-collision microtube plasma (MC-μTP) ionization for direct online MS analysis. This device features a self-aspirating design that enables the direct analysis of various sample types.

View Article and Find Full Text PDF

Based on the application demand of metal-organic framework (MOFs) materials in environmental science, energy conversion, biomedicine and other fields, its efficient synthesis method has attracted much attention. Microwave method has become one of the most competitive and potential methods because of its low cost, high efficiency and green environmental protection. However, the traditional microwave assisted synthesis of MOFs materials mostly uses microwave oven as the reaction chamber, or small-scale microwave reactor.

View Article and Find Full Text PDF

Efficient and selective oxidative dehydrogenation (ODH) catalysts are crucial to advance the production of valuable petrochemicals. In this study, we leverage the power of machine learning to predict dehydrogenation (DH) product yield and unravel the factors influencing the product distribution. A comprehensive data set obtained from experiments conducted in a fixed-bed reactor under varying temperatures, feed ratios (O/-butane), and metal oxide loadings (Ni, Fe, Co, Bi, Mo, W, Zn, and Mn) on an aluminum oxide support served as the basis for model development.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!