Controlling the protein corona of polymeric nanocapsules: effect of polymer shell on protein adsorption.

Drug Deliv Transl Res

Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), University of Santiago de Compostela, 15782, Santiago de Compostela, Spain.

Published: April 2024

Understanding the interactions between nanocarriers and plasma proteins is essential for controlling their biological fate. Based on the reported potential of polymeric nanocapsules (NCs) for the targeted delivery of oncological drugs, the main objective of this work has been to investigate how the surface chemical composition influences their protein corona fingerprint. Thus, we developed six NC prototypes with different polymer shells and physicochemical properties and quantified the amount of protein adsorbed upon incubation in human plasma. Using sequential window acquisition of all theoretical mass spectra (SWATH-MS) and following the Minimum Information about Nanomaterial Biocorona Experiments (MINBE) guidelines, we identified different protein corona patterns. As expected, the presence of polyethylene glycol (PEG) in the polymer shell reduced the protein corona, particularly the adsorption of immunoglobulins. However, by comparing the different prototypes, we concluded that the protein adsorption pattern was not exclusively driven by PEG. In fact, a highly PEGylated prototype exhibited intense apolipoprotein IV adsorption. On the other hand, we also observed that polymeric NCs containing 1,2-dioleoyl-3-trimethylammonium propane (DOTAP) exhibited high adsorption of vitronectin, a protein that is known for enhancing the uptake of nanosystems by lung epithelium and several cancer cells. Overall, the gathered information allowed us to identify promising polymeric NCs with an expected prolonged circulation time, enhanced tumor targeting, liver accumulation, and preferential uptake by the immune system. In this sense, the analyses of the protein corona performed along this work will hopefully contribute to advancing a new generation of rationally designed nanometric drug delivery systems.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s13346-023-01441-5DOI Listing

Publication Analysis

Top Keywords

protein corona
20
polymeric nanocapsules
8
polymer shell
8
protein
8
protein adsorption
8
polymeric ncs
8
corona
5
adsorption
5
controlling protein
4
polymeric
4

Similar Publications

Silica Nanoparticle-Protein Aggregation and Protein Corona Formation Investigated with Scattering Techniques.

ACS Appl Mater Interfaces

January 2025

School of Science, STEM College, RMIT University, 124 La Trobe Street, Melbourne, Victoria 3000, Australia.

Protein-nanoparticle interactions and the resulting corona formation play crucial roles in the behavior and functionality of nanoparticles in biological environments. In this study, we present a comprehensive analysis of protein corona formation with superfolder green fluorescent protein (sfGFP) and bovine serum albumin in silica nanoparticle dispersions using small-angle X-ray scattering (SAXS) and dynamic light scattering (DLS). For the first time, we subtracted the scattering of individual proteins in solution and individual nanoparticles from the protein-nanoparticle complexes.

View Article and Find Full Text PDF

In recent years, the chiral biological effects of nanomedicines have garnered significant interest. Research has focused on understanding how material chirality affects cellular transcription and metabolism. Stress granules, which are membraneless organelles formed through liquid-liquid phase separation of G3BP1 proteins and related compartments, have been extensively studied and are closely associated with cellular damage repair and metabolism.

View Article and Find Full Text PDF

The demand for healthier snack options has driven innovation in frozen dairy products. This study developed and characterized novel frozen dairy snacks fermented with probiotics ( LA5; GG, and BIOTEC003) and containing 2% blueberry bagasse. Four formulations (LA5, LGG, LA5-BERRY, and LGG-BERRY) were analyzed for their nutritional, physicochemical, functional, and sensory properties.

View Article and Find Full Text PDF

Since the precursor frequency of naive T cells is extremely low, investigating the early steps of antigen-specific T cell activation is challenging. To overcome this detection problem, adoptive transfer of a cohort of T cells purified from T cell receptor (TCR) transgenic donors has been extensively used but is not readily available for emerging pathogens. Constructing TCR transgenic mice from T cell hybridomas is a labor-intensive and sometimes erratic process, since the best clones are selected based on antigen-induced CD69 upregulation or IL-2 production in vitro, and TCR chains are polymerase chain reaction (PCR)-cloned into expression vectors.

View Article and Find Full Text PDF

Recent times have witnessed revolutionary progress in the design and development of functionalized nanomaterials as promising tools for biomedicinal applications. However, the gap in the fundamental understanding of the "biological responses" of the nanomaterials after the formation of "protein-corona" when it is exposed to the body system has drawn a thin line from its discoveries to real clinical trial. In this article we have synthesized two different silver NPs capped with the polyphenols of (guava) leaf extract and the other with one of its major polyphenolic groups, morin.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!