Bandgap Engineering of Erbium-Metallofullerenes toward Switchable Photoluminescence.

Adv Mater

Key Laboratory of Precision and Intelligent Chemistry, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, 230026, China.

Published: December 2023

Encapsulating photoluminescent lanthanide ions like erbium (Er) into fullerene cages affords photoluminescent endohedral metallofullerenes (EMFs). Few reported photoluminescent Er-EMFs are all based on encapsulation of multiple (two to three) metal atoms, whereas mono-Er-EMFs exemplified by Er@C are not photoluminescent due to its narrow optical bandgap. Herein, by entrapping an Er-cyanide cluster into various C cages to form novel Er-monometallic cyanide clusterfullerenes (CYCFs), ErCN@C (C (5), C (6), and C (9)), the photoluminescent properties of CYCFs are investigated, and obvious near-infrared (NIR) photoluminescence only is observed for ErCN@C (5)-C . Combined with a comparative photoluminescence study of three medium-bandgap di-Er-EMFs, including Er @C (6)-C , Er O@C (6)-C , and Er C @C (6)-C , this study proposes that the optical bandgap can be used as a simple criterion for switching the photoluminescence of Er-EMFs, and the bandgap threshold is determined to be between 0.83 and 0.74 eV. Furthermore, the photoluminescent patterns of these three di-Er-EMFs differ dramatically. It is found that the location of the Er atom within the same C (6)-C cage is almost fixed and independent on the endo-unit; thus the previous statement on the key role of metal position in photoluminescence of di-Er-EMFs seems erroneous, and the geometric configuration of the endo-unit, especially the bridging mode of two Er ions, is decisive instead.

Download full-text PDF

Source
http://dx.doi.org/10.1002/adma.202304121DOI Listing

Publication Analysis

Top Keywords

optical bandgap
8
photoluminescent
6
photoluminescence
5
bandgap
4
bandgap engineering
4
engineering erbium-metallofullerenes
4
erbium-metallofullerenes switchable
4
switchable photoluminescence
4
photoluminescence encapsulating
4
encapsulating photoluminescent
4

Similar Publications

Modifying ZnO nanorods with graphene oxide (GO) is crucial for enhancing photocatalytic degradation by boosting the concentration of reactive oxygen species (ROS) in the reaction medium. In this study, we present a straightforward chemical synthesis of ZnO nanorods embedded on GO, forming a novel nanocomposite, GOZ. This composite serves as an efficient photocatalyst for the sunlight-driven degradation of methylene blue (MB) and ciprofloxacin (CIP).

View Article and Find Full Text PDF

Free Carrier Auger-Meitner Recombination in Monolayer Transition Metal Dichalcogenides.

Nano Lett

December 2024

Wyant College of Optical Sciences, University of Arizona, 1630 East University Boulevard, Tucson, Arizona 85721, United States.

Microscopic many-body models based on inputs from first-principles density functional theory are used to calculate the carrier losses due to free carrier Auger-Meitner recombination (AMR) processes in Mo- and W-based monolayer transition metal dichalcogenides as a function of the carrier density, temperature, and dielectric environment. Despite the exceptional strength of Coulomb interaction in the two-dimensional materials, the AMR losses are found to be similar in magnitude to those in conventional III-V-based quantum wells for the same wavelengths. Unlike the case in III-V materials, the losses show nontrivial density dependencies due to the fact that bandgap renormalizations on the order of hundreds of millielectronvolts can bring higher bands into or out of resonance with the optimal energy level for the AMR transition, approximately one bandgap from the lowest band.

View Article and Find Full Text PDF

Organic Iono-Optoelectronics: From Electrochromics to Artificial Retina.

Acc Chem Res

December 2024

Tarpo Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States.

ConspectusOrganic mixed ionic electronic conductors (OMIECs) represent an exciting and emerging class of materials that have recently revitalized the field of organic semiconductors. OMIECs are particularly attractive because they allow both ionic and electronic transport while retaining the inherent benefits of organic semiconducting materials such as mechanical conformability and biocompatibility. These combined properties make the OMIECs ideal for applications in bioelectronics, energy storage, neuromorphic computing, and electrochemical transistors for sensing.

View Article and Find Full Text PDF

We have grown (111)- and (001)-oriented NiO thin films on (0001)-Sapphire and (001)-MgO substrates using pulsed laser deposition (PLD), respectively. DC magnetic susceptibility measurements underline that the Néel temperatures of the samples are beyond room-temperature. This is further confirmed by the presence of two-magnon Raman scattering modes in these films in ambient conditions.

View Article and Find Full Text PDF

Synthesis of Mg doped ZnO cauli-flower nanostructures using chemical spray and its investigation for ammonia gas sensing at room temperature.

Talanta

December 2024

Thin Films and Materials Science Research Laboratory, Department of Physics, Dayanand Science College, Latur, Maharashtra, 413512, India. Electronic address:

In this study, we report the synthesis, optical characterization and ultra-sensitive ammonia gas sensing properties of Mg-doped ZnO cauliflower like nanostructures obtained via chemical spray pyrolysis technique. The morphological and structural properties of the prepared films were investigated by Field Emission Scanning electron microscope (FESEM) and X-ray diffraction (XRD). Gas sensing and optical characterizations were carried out using Keithley electrometer and Uv-Vis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!