Background: Osteoarthritis (OA) is a multifaceted chronic joint disease characterized by complex mechanisms. It has a detrimental impact on the quality of life for individuals in the middle-aged and elderly population while also imposing a significant socioeconomic burden. At present, there remains a lack of comprehensive understanding regarding the pathophysiology of OA. The objective of this study was to examine the genes, functional pathways, and immune infiltration characteristics associated with the development and advancement of OA.
Methods: The Gene Expression Omnibus (GEO) database was utilized to acquire gene expression profiles. The R software was employed to conduct the screening of differentially expressed genes (DEGs) and perform enrichment analysis on these genes. The OA-characteristic genes were identified using the Weighted Gene Co-expression Network Analysis (WGCNA) and the Lasso algorithm. In addition, the infiltration levels of immune cells in cartilage were assessed using single-sample gene set enrichment analysis (ssGSEA). Subsequently, a correlation analysis was conducted to examine the relationship between immune cells and the OA-characteristic genes.
Results: A total of 80 DEGs were identified. As determined by functional enrichment, these DEGs were associated with chondrocyte metabolism, apoptosis, and inflammation. Three OA-characteristic genes were identified using WGCNA and the lasso algorithm, and their expression levels were then validated using the verification set. Finally, the analysis of immune cell infiltration revealed that T cells and B cells were primarily associated with OA. In addition, Tspan2, HtrA1 demonstrated a correlation with some of the infiltrating immune cells.
Conclusions: The findings of an extensive bioinformatics analysis revealed that OA is correlated with a variety of distinct genes, functional pathways, and processes involving immune cell infiltration. The present study has successfully identified characteristic genes and functional pathways that hold potential as biomarkers for guiding drug treatment and facilitating molecular-level research on OA.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10559406 | PMC |
http://dx.doi.org/10.1186/s12920-023-01672-y | DOI Listing |
Adv Clin Chem
January 2025
Department of Obstetrics and Gynecology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil. Electronic address:
Preeclampsia (PE), a pregnancy-related syndrome, has motivated extensive research to understand its pathophysiology and develop early diagnostic methods. 'Omic' technologies, focusing on genes, mRNA, proteins, and metabolites, have revolutionized biological system studies. Urine emerges as an ideal non-invasive specimen for omics analysis, offering accessibility, easy collection, and stability, making it valuable for identifying biomarkers.
View Article and Find Full Text PDFBrachytherapy
January 2025
Department of Radiology, The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of life Sciences and Medicine, University of Science and Technology, Hefei, Anhui 230022, PR China. Electronic address:
Purpose: To compare the effectiveness and safety of CT-guided iodine-125 seed brachytherapy in conjunction with chemotherapy against chemotherapy alone for the management of intermediate and advanced non-small cell lung cancer (NSCLC) lacking oncogenic driving genes.
Methods And Materials: Retrospective analysis was conducted on clinical data from 128 patients diagnosed with intermediate and advanced non-small cell lung cancer who received iodine-125 combined with chemotherapy or chemotherapy alone due to the absence of oncogenic driver gene mutations. The patients in two groups were compared at 6-month follow-up for objective remission rate (ORR), Disease control rate (DCR), local progression-free survival (LPFS), overall survival (OS), clinical symptom improvement, and adverse events.
Int J Biol Macromol
January 2025
Hunan Key Laboratory for Breeding of Clonally Propagated Forest Trees, Hunan Academy of Forestry, Changsha, Hunan 410004, China. Electronic address:
B-box proteins (BBX) play pivotal roles in the regulation of numerous growth and developmental processes in plants, particularly the light-mediated biosynthesis of pigments. To elucidate the role of BBX transcription factors in the anthocyanin biosynthetic pathway of Lagerstroemia indica leaves, this study identified 41 BBX genes in the L. indica genome.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China; Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Engineering Research Center of Landscape Environment of Ministry of Education, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, China. Electronic address:
The GRAS gene family, is instrumental in a myriad of biological processes, including plant growth and development. Our findings revealed that Paeonia ludlowii (Stern & G.Taylor) D.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Key Laboratory for Research and Utilization of Characteristic Biological Resources in Southern Yunnan, College of Biological and Agricultural Sciences, Honghe University, Mengzi 661199, Yunnan, China. Electronic address:
Flavonoids are the major medicinally active ingredients that exert potential effects in Amomum tsao-ko. In total, 277 flavonoid metabolites were identified in fresh and dried fruits of three different accessions of A. tsao-ko (Amomum tsao-ko), which could be classified into eight classes with more metabolites classified as flavonol.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!