Bayesian learning from multi-way EEG feedback for robot navigation and target identification.

Sci Rep

Automatic Control and Systems Engineering Department, University of Sheffield, Sheffield, S1 4DT, UK.

Published: October 2023

Many brain-computer interfaces require a high mental workload. Recent research has shown that this could be greatly alleviated through machine learning, inferring user intentions via reactive brain responses. These signals are generated spontaneously while users merely observe assistive robots performing tasks. Using reactive brain signals, existing studies have addressed robot navigation tasks with a very limited number of potential target locations. Moreover, they use only binary, error-vs-correct classification of robot actions, leaving more detailed information unutilised. In this study a virtual robot had to navigate towards, and identify, target locations in both small and large grids, wherein any location could be the target. For the first time, we apply a system utilising detailed EEG information: 4-way classification of movements is performed, including specific information regarding when the target is reached. Additionally, we classify whether targets are correctly identified. Our proposed Bayesian strategy infers the most likely target location from the brain's responses. The experimental results show that our novel use of detailed information facilitates a more efficient and robust system than the state-of-the-art. Furthermore, unlike state-of-the-art approaches, we show scalability of our proposed approach: By tuning parameters appropriately, our strategy correctly identifies 98% of targets, even in large search spaces.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10560278PMC
http://dx.doi.org/10.1038/s41598-023-44077-8DOI Listing

Publication Analysis

Top Keywords

robot navigation
8
reactive brain
8
target locations
8
target
6
bayesian learning
4
learning multi-way
4
multi-way eeg
4
eeg feedback
4
robot
4
feedback robot
4

Similar Publications

The inherent challenges of robotic underwater exploration, such as hydrodynamic effects, the complexity of dynamic coupling, and the necessity for sensitive interaction with marine life, call for the adoption of soft robotic approaches in marine exploration. To address this, we present a novel prototype, ZodiAq, a soft underwater drone inspired by prokaryotic bacterial flagella. ZodiAq's unique dodecahedral structure, equipped with 12 flagella-like arms, ensures design redundancy and compliance, ideal for navigating complex underwater terrains.

View Article and Find Full Text PDF

Three-dimensional (3D) LiDAR is crucial for the autonomous navigation of orchard mobile robots, offering comprehensive and accurate environmental perception. However, the increased richness of information provided by 3D LiDAR also leads to a higher computational burden for point cloud data processing, posing challenges to real-time navigation. To address these issues, this paper proposes a 3D point cloud optimization method based on the octree data structure for autonomous navigation of orchard mobile robots.

View Article and Find Full Text PDF

Background: Surgeons' reliance on intraoperative fluoroscopy during vertebroplasty procedures has raised concerns regarding the level of patient and surgeon radiation. Navigation systems have shown a potential to reduce the overall patient and medical staff exposure during dose exposure studies. The main objective of this study was to determine whether the Surgivisio platform (eCential Robotics, France), a unified imaging and navigation platform, lowers the patient dose during routine clinical usage as compared with published fluoroscopy and other navigation options that are published in the literature.

View Article and Find Full Text PDF

Achieving a comprehensive understanding of animal intelligence demands an integrative approach that acknowledges the interplay between an organism's brain, body and environment. Insects, despite their limited computational resources, demonstrate remarkable abilities in navigation. Existing computational models often fall short in faithfully replicating the morphology of real insects and their interactions with the environment, hindering validation and practical application in robotics.

View Article and Find Full Text PDF

Soft robots and bioinspired systems have revolutionized robot design by incorporating flexibility and deformable materials inspired by nature's ingenious designs. Similar to many robotic applications, sensing and perception are paramount to enable soft robots to adeptly navigate the unpredictable real world, ensuring safe interactions with both humans and the environment. Despite recent progress, soft robot sensorization still faces significant challenges due to the virtual infinite degrees of freedom of the system and the need for efficient computational models capable of estimating valuable information from sensor data.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!