Silicosis is a progressive pulmonary fibrosis disease caused by long-term inhalation of a large amount of free crystalline silica, which seriously threatens the health of relevant workers and causes a huge amount of disease burden. The pathogenesis of silicosis is complex and unclear, it has been reported that long non coding RNA (lncRNA) plays an important role in the pathogenesis of silicosis. In order to improve the understanding of the disease and provide directions for the prevention and treatment of silicosis, this article reviewed the mechanism of lncRNA in the pathogenesis and disease progression of silicosis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3760/cma.j.cn121094-20220218-00077 | DOI Listing |
Alveolar type 2 (AT2) cells maintain lung health by acting as stem cells and producing pulmonary surfactant. AT2 dysfunction underlies many lung diseases, including interstitial lung disease (ILD), in which some inherited forms result from the mislocalization of surfactant protein C (SFTPC) variants. Lung disease modeling and dissection of the underlying mechanisms remain challenging due to complexities in deriving and maintaining human AT2 cells ex vivo.
View Article and Find Full Text PDFJ Rheumatol
January 2025
J.A. Sparks, MD, MMSc, Brigham and Women's Hospital, Division of Rheumatology, Inflammation, and Immunity and Harvard Medical School, Boston, Massachusetts, USA.
Objective: To investigate baseline and change of pulmonary damage biomarkers (serum Krebs von den Lungen 6 [KL-6], human surfactant protein D [hSP-D], and matrix metalloproteinase 7 [MMP-7]) with rheumatoid arthritis-associated interstitial lung disease (RA-ILD) progression.
Methods: In the Korean Rheumatoid Arthritis Interstitial Lung Disease (KORAIL) cohort, a prospective cohort, we enrolled patients with RA and ILD confirmed by chest computed tomography imaging and followed annually. ILD progression was defined as worsening in physiological and radiological domains of the 2022 American Thoracic Society, European Respiratory Society, Japanese Respiratory Society, and Latin American Thoracic Society guideline for progressive pulmonary fibrosis (PPF).
Phytomedicine
December 2024
Univ Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, Azinhaga de S. Comba, Coimbra 3000-548, Portugal; Univ Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Portugal; Clinical Academic Centre of Coimbra (CACC), Coimbra, Portugal.
Background: Pulmonary Arterial Hypertension (PAH) is characterized by pulmonary vascular remodelling, often associated with disruption of BMPR2/Smad1/5 and BMPR2/PPAR-γ signalling pathways that ultimately lead to right ventricle failure. Disruption of intercellular junctions and communication and a pro-angiogenic environment are also characteristic features of PAH. Although, current therapies improve pulmonary vascular tone, they fail to tackle other key pathological features that could prevent disease progression.
View Article and Find Full Text PDFTissue Cell
January 2025
Department of Human and Animal Physiology, Yerevan State University, Yerevan, 1 Alek Manukyan St, Yerevan 0025, Armenia; Research Institute of Biology, Yerevan State University, Yerevan, 1 Alek Manukyan St, Yerevan 0025, Armenia. Electronic address:
High altitude characterized by the low partial pressure of the oxygen is a life-threatening condition that contributes to the development of acute pulmonary edema and hypoxic lung injury. In this study, we aimed to investigate the contribution of some inflammatory and oxidative stress markers along with antioxidant system enzymes in the pathogenesis of HAPE (high-altitude pulmonary edema) formation. We incorporated the study on 42 male rats to unravel the role of mast cells (MCs) and TNF-α in the lung after the effect of acute hypobaric hypoxia.
View Article and Find Full Text PDFElife
January 2025
Wellcome Centre for Cell-Matrix Research, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom.
Collagen-I fibrillogenesis is crucial to health and development, where dysregulation is a hallmark of fibroproliferative diseases. Here, we show that collagen-I fibril assembly required a functional endocytic system that recycles collagen-I to assemble new fibrils. Endogenous collagen production was not required for fibrillogenesis if exogenous collagen was available, but the circadian-regulated vacuolar protein sorting (VPS) 33b and collagen-binding integrin α11 subunit were crucial to fibrillogenesis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!