Acute myeloid leukemia (AML) is one of the deadliest hematologic malignancies, and its targeted therapy has developed slowly. The molecular mechanism of the pathophysiology of the disease remains to be clarified. The aim of our study was to probe the specific regulatory mechanism of miR-455-3p in AML. This study measured the levels of miR-455-3p and ubinuclein-2 (UBN2) in AML cell lines, evaluated cell viability with CCK-8, used flow cytometry to estimate the cell cycle and apoptosis, detected cell apoptosis and autophagy-related protein levels by Western blotting, and added 50 μM chloroquine (CQ) to evaluate the relationship between autophagy and AML. In animal experiments, HL-60 cells were injected into male non-obese diabetic/severe combined immunodeficiency disease (NOD/SCID) mice through the tail vein to determine survival time and observe the degree of liver and spleen damage in the mice. miR-455-3p was prominently reduced in the peripheral blood and AML cell lines, and UBN2 showed high expression. The transfected miR-455-3p mimic effectively restrained the activity of AML cells, whereas overexpression of UBN2 or the addition of the autophagy inhibitor CQ reversed the effect of miR-455-3p. The interaction between UBN2 and peroxisome proliferator-activated receptor alpha (PPARα) was confirmed by coimmunoprecipitation, and overexpression of PPARα reversed the promoting effect of UBN2 knockdown on apoptosis and autophagy in AML cells. In conclusion, miR-455-3p mediates PPARα protein expression through UBN2, exacerbating AML cell apoptosis and autophagy. This study found that miR-455-3p plays an important role in AML cell apoptosis and autophagy, which may provide novel insights for the treatment of AML diseases.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.exphem.2023.09.007DOI Listing

Publication Analysis

Top Keywords

apoptosis autophagy
16
aml cell
16
cell apoptosis
12
aml
10
mir-455-3p
8
mir-455-3p mediates
8
mediates pparα
8
acute myeloid
8
myeloid leukemia
8
cell lines
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!