The calF7 mutation in Aspergillus nidulans causes hypersensitivity to the cell wall compromising agents Calcofluor White (CFW) and Congo Red. In this research we demonstrate that the calF7 mutation resides in gene AN2880, encoding a predicted member of the OSCA/TMEM63 family of transmembrane glycoproteins. Those members of the family whose physiological functions have been investigated have been shown to act as mechanosensitive calcium transport channels. Deletion of AN2880 replicates the CFW hypersensitivity phenotype. Separately, we show that CFW hypersensitivity of calF deletion strains can be overcome by inclusion of elevated levels of extracellular calcium ions in the growth medium, and, correspondingly, wild type strains grown in media deficient in calcium ions are no longer resistant to CFW. These observations support a model in which accommodation to at least some forms of cell wall stress is mediated by a calcium ion signaling system in which the AN2880 gene product plays a role. The genetic lesion in calF7 is predicted to result in a glycine-to-arginine substitution at position 638 of the 945-residue CalF protein in a region of the RSN1_7TM domain that is highly conserved amongst filamentous fungi. Homology modeling predicts that the consequence of a G638R substitution is to structurally occlude the principal conductance pore in the protein. GFP-tagged wild type CalF localizes principally to the Spitzenkörper and the plasma membrane at growing tips and forming septa. However, both septation and hyphal morphology appear to be normal in calF7 and AN2880 deletion strains, indicating that any role played by CalF in normal hyphal growth and cytokinesis is dispensable.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.fgb.2023.103842 | DOI Listing |
Biochemistry
December 2024
Department of Chemistry and Biochemistry, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093-0358, United States.
(Mtb) is a leading cause of death, with an escalating global occurrence of drug-resistant infections that are partially attributed to cell wall mycolic acids derived from type II fatty acid biosynthesis (FAS-II). Here, the central acyl carrier protein, AcpM, contributes to the regulation of complex and specific protein-protein interactions (PPIs), though the orchestration of these events remain largely unresolved due to unique features of AcpM. Limitations include complexities in generating modified AcpM in a single state.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
Institute of Qinghai-Tibetan Plateau, Southwest Minzu University, Chengdu, Sichuan 610225, PR China; Sichuan Provincial Qiang-Yi Medicinal Resources Protection and Utilization Technology and Engineering Laboratory, Southwest Minzu University, Chengdu, Sichuan 610225, PR China. Electronic address:
Cellulose, synthesized by cellulose synthase (CESA) complexes, is an essential component of plant cell walls; defects in cellulose synthesis compromise cell wall integrity. The maintenance of this integrity is vital for plant growth, development, and stress responses. Consequently, plants must continuously synthesize and remodel their cell walls, a process intricately linked to cellulose biosynthesis.
View Article and Find Full Text PDFJ Control Release
December 2024
Department of Traumatology and Orthopaedic Surgery, Huizhou Central People's Hospital, Huizhou 516001, China; Hui Zhou-Hong Kong Bone Health Joint Research Center, Institute of Orthopaedics, Huizhou Central People's Hospital, Huizhou 516001, China. Electronic address:
Bacterial infections evoke considerable apprehension in orthopedics. Traditional antibiotic treatments exhibit cytotoxic effects and foster bacterial resistance, thereby presenting an ongoing and formidable obstacle in the realm of therapeutic interventions. Achieving bacterial eradication and osteogenesis are critical requirements for bone infection treatment.
View Article and Find Full Text PDFJ Hazard Mater
December 2024
Centre of Advanced Study in Marine Biology, Faculty of Marine Sciences, Annamalai University, Parangipettai, Tamil Nadu 608502, India.
Plastic biodegradation by microbes is an environmentally friendly and sustainable approach that has no negative consequences. In this study, mealworms were fed with 9 different diets with expanded polystyrene (EPS) and polyethylene foam (PF), after 28 days of incubation mealworm survival rates were highest at 93.3 % when fed wheat bran alone whereas 83.
View Article and Find Full Text PDFBioorg Chem
December 2024
State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China. Electronic address:
Given the ever-evolving landscape of antimicrobial resistance, the emergence of New Delhi metallo-β-lactamase-1 (NDM-1) has introduced a formidable challenge to global public health. In previous research, we identified the Compound Zndm19 as an NDM-1 inhibitor and reported Zndm19 derivatives, which exhibited moderate antibacterial activity when combined with meropenem (MEM). This moderate activity may have been due to the inability of Zndm19 to efficiently penetrate the bacterial outer membrane or its susceptibility to hydrolysis, which prevented it from exerting strong enzyme inhibition in synergy with bacterial cells.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!